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ABSTRACT

The dichotomy of absolute continuity and singularity for a pair of station-
ary and ergodic measures (one of which need not be ergodic) is obtained using
the ergodic decomposition theorem. The known fact that two different sta-
tionary and ergodic measures are mutually singular is obtained as a corollary
of our result. An example of a pair of stationary-ergodic measures enjoying
the dichotomy is presented.
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1. INTRODUCTION

Suppose that two probability measures P and () are given on a measurable space
(Q, F). Q is called absolutely continuous with respect to P (denoted by @ << P) if
Q(A) = 0 whenever P(A)=0for A€ F. f Q << P and P << @, these measures
are called equivalent (Q ~ P). We say that ) and P are (mutually) singular or
orthogonal (Q L P) if there exists a set B € F such that Q(B) =0 and P(B) = 0.
There are some cases that Q and P are either absolutely continuous or singular: the
dichotomy. It is of course possible that () and P are neither absolutely continuous
nor singular. For example, let Q and P be singular on (§2, F), and let R = (P+Q)/2.
Then neither R << P nor R L P.
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Kakutani (1948) obtained the dichotomy theorem for infinite product proba-
bility measures using the Hellinger distance. Hajek (1958) and Feldman (1958)
independently proved the dichotomy property for Gaussian measures, and Gihman
and Skorohod (1966), and Brown (1971) obtained the dichotomy for Poisson pro-
cesses. Also it is known that two probability measures induced by stationary and
ergodic processes are either same or singular (see Breiman (1968), Corollary 6.24,
for example). For arbitrary probability measures, Kabanov, Liptser and Shiryayev
(1977) established some necessary and sufficient conditions for absolute continuity
and singularity using the martingale theory.

In this note, the dichotomy theorem for a pair of stationary and ergodic measures
(one of which need not be ergodic) is obtained using the ergodic decomposition
theorem and the ergodic convergence theorem. The Corollary 6.24 in Breiman (1968)
which states that two different stationary and ergodic measures are mutually singular
is obtained as a corollary of our result. An example of a pair of stationary and ergodic
measures, one of which is not ergodic, enjoying the dichotomy is constructed in the
last section.

2. MAIN RESULT

Theorem 1. Let § be a separable metric space, and F be a Borel field gener-
ated by Q. Let P be a stationary measure on (£, F) with transformation operator
T, and @) be a stationary-ergodic measure on (2, F). Then the dichotomy arises:
either L P or Q << P.

Proof. Let A be a metric space (with the Prohorov distance) which is the class
of all stationary-ergodic probability measures P.., on (2, F), and Fp be a Borel
field generated by A. Then the ergodic decomposition theorem (see Gray (1988),
Section 7.4, for reference) asserts the existence of a measure A on (A, F,) such that

P(A) = /APW(A) AdP..,), (2.1)

for A€ F and P.,, € A.

Let # index all stationary-ergodic probability measures on (2, F) in one-to-one
manner (i.e., Ps(A) = Py(A) for all A € F iff § = #'), and © be the class of all
such #’s. This indexation is of course identifiable in the sense that 6 # ¢ implies
that there exists a set B € F such that Py(B) # Ps(B). Thus the parametrization
of all Py on (£, F) by an index set O is always possible by giving indexes to all
equivalent classes which consist of a partition of A. Then (2.1) is rewritten by

P(A) = /@P(,(A) A(d6), (2.2)
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for A € F and 0 € ©. Then, by the ergodic decomposition theorem again, their
exists a measurable function #(w): 2 — O such that, for A € F,

nl_.n)lo;ZlA = Pg(w)(A) a.c. [P] (23)
1=20
Let
B = . lim — ZUk (T'w) = Q(Ax), k> 1}, (2.4)

where a collection of sets {Ax}x>i countably generates F, by the separability of Q.
‘Then Q(B) = 1 by the ergodic convergence theorem. We see from (2.3) and (2.4)
that

PB) = Plw : PaoyAw) = Q(AL), k> 1)
:P{w . PO(w) - Q}, (25)

since { Ak }x>1 countably generates F. Take a 6* € O such that Py = @, since @ is
a stationary-ergodic measure on ({2, F). Then by the one-to-one property of Py, we
have from (2.5) that

P(B):P{w . Pg(w) = Pg-}
= Plw : w) = 07}
=8 : 6 = 0"} (2.6)

If (2.6) is equal to 0, then P(B) = 0 and Q L P. Thus suppose (2.6) be positive.
Then, for any A € F, it follows from (2.2) that

PA)= [ PAAYNAO) + [ Pal4) AdD)

= A0 = 07)Q(A) + /{9#).} Py(A) Mdf). (2.7)

Since the second term of (2.7) is nonnegative and A(§ = 0*) > 0, P(A) = 0 im-
plies Q(A) = 0, and consequently () << P. Therefore, the dichotomy is obtained,
according to P(B) = 0 or positive.

Theorem 2. Under the same condition of Theorem 1, if P is stationary and
ergodic, then the followings are equivalent:

(1) P ~Q,
(2) P and @ are not singular,

(3) P =0,
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(4) P(B) > 0 (actually P(B) = 1).

Proof. First, it is enough to show P << () when P(B) > 0, where B is
same to (2.4). Since B is an invariant event and P is a stationary-ergodic mea-
sure, P(B) > 0 implies P(B) = 1. That is. A(0 = 6*) = 0 and consequently the
second term of (2.7) vanishes. Thus Q(A) = 0 implies P(A) = 0 in (2.7), and
so that P << Q. Therefore, incoporating with Theorem 1, we have P 1 Q iff
P(B) =0,and P ~ Q iff P(B) > 0 (actually P(B) = 1). Moreover, since P(B)=1
ff A0 =0")=1, P(A) = Q(A) for any A € F from (2.7). This completes the proof.

The Theorem 2 implies that two different stationary-ergodic measures are mu-
tually singular (Corollary 6.24 in Breiman (1968)), and two equivalent stationary-
ergodic measures are same.

3. AN EXAMPLE

A pair of stationary-ergodic measures, one of which is not ergodic, enjoying the
dichotomy is constructed in this section.
Let m, and m, are two different stationary-ergodic measures, and

P=am+(l-—a)m,, 0<ac<l.

Then P is stationary but not ergodic (see Gray (1988), p. 212), and m; << P
and m, << P.

Now consider a stationary-ergodic measure () which is not equal to m; and my.
Then @ L m; and @ L m; by Theorem 2. So there exist sets S, U € F such
that Q(5) = 0, my(S) = 1 and Q(U) = 0, my(U) = 1. Thus Q(S U U) = 0 and
P(SUU) =1, and consequently Q L P.

Therefore, if Q = m; or Q = m, then Q << P, and if Q # m; and @ # m, then
Q1P
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