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Abstract

Calibration of engine models is a painstaking process but very important for successful
application to automotive industry problems. A combined heuristic and machine learning
approach has therefore been adopted to improve the efficiency of model calibration. We
developed an intelligent calibration program called ICALIB. It has been used on a daily
basis for engine model applications. and has reduced the time required for model
calibrations from many hours to a few minutes on average. In this paper, we describe the
heuristic control strategies employed in ICALIB such as a hill-climbing search based on a
state distance estimation function. incremental problem solution refinement by using a
dynamic tolerance window. and calibration target parameter ordering for guiding the
search. In addition. we present the application of a machine learning program called GID3
« for automatic acquisition of heuristic rules for ordering target parameters.

| . Introduction

IEEE B 75 18 Engine modeling and simulation is
(Dept. of Computer Fng.. Pusan Nat'1 becoming more and more important to the
Univ.) automotive industry under ever-escalating
e HF 19934 41 231 pressure to reduce automobile air pollution,
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to improve fuel economy. and to reduce
vehicle design-to-production time. To meet
the demand. many engine component models,
analytical as well as empirical. have been
developed for engine concept assessment,
design change evaluation. and performance
problem diagnosis. As hard as modelers try.
many models cannot be used directly to
accurately predict engine behavior, because
the knowledge about engine components
being modeled is often incomplete or
imperfect. To be able to use a model to
simulate an engine. one has to first calibrate
the model to match the engine at one or
more operating conditions. This calibrated
model can then be applied to simulate the
engine with an acceptable accuracy. The
effects of typical model calibrations can be as
simple as offsetting a target parameter curve
or changing the slope of a target parameter
curve: or it can be as complicated as
changing the shape of a target parameter
curve. In this paper we use a representative
model. GESIM (General Engine SIMulation
program) | to illustrate the calibration
problem .

GESIM model calibration in the past has
been a very tedious manual procedure. A
typical model user has to spend at least
several hours to complete one GESIM
calibration session. This process has to be
repeated whenever a different engine is to be
simulated. Furthermore. for some special
applications, engine models have to be
calibrated at many operating points for the
need of generating an engine performance
map. The need for an automated and
efficient calibration program is therefore
obvious. This automation, however. is a very
challenging task. because (1) the calibration
process searches for a goal state in a huge,
continuous state space, (2) calibration is
often a lengthy and frustrating task because
of complicated mutual interference among the
target parameters, and (3) the calibration
problem is heuristic by nature. and often
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heuristic knowledge for constraining a search
cannot be easily acquired from domain
experts. To avercome these difficulties .
propose a combined heuristic and machine
learning approach to acquisition and

we

incorporation of domain knowledge into a
model calibration process. We identified three
important heuristic strategies that can be
used to model
calibration. The first is a hill-climbing search
strategy based on a heuristic state distance

reduce search during

estimation function. The second is an
incremental problem solution refinement
strategy based on a dynamic tolerance
The third and most
Important. strategy is the ordering of
calibration target parameters based on a set
of heuristic rules automatically acquired. An
automated intelligent calibration program.
called ICALIB. has been developed which
employs all the above three strategies. The
program has dramatically reduced model
calibration time from several hours to only a
few minutes on average.

The rest of this paper is organized as
formulates the model

window scheme.

follows: Section [
calibration problem for the ease of explaining
our heuristic approach: Section I describes
the detail of the three heuristic search
control strategies: Section IV presents a
machine learning approach to acquiring
knowledge about ordering constraints among
calibration target parameters. Section V
summarizes the result and
directions for future work.

discusses

[. Model Calibration Problem

In order to explore heuristic strategies for
the calibration problem. we need a good
understanding of the calibration problem in
general as well as a proper formulation of the
problem. In the following, we first give an
informal account of a GESIM model
calibration problem. Then. we specify the
calibration problem under a state-space
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search problem framework.

GESIM model calibration has
described as follows ™ :

GESIM model calibration is a process
whereby certain engine measurements,
termed “target values’.
dynamometer test of the chosen engine or
The process of

been

are selected from a

combustion system.
calibration then consists of executing the
model for successive runs (or iterations), each
with a different setting on a selected
“adjustable parameter’ until the “target
value’ - This
process is repeated until all of the target
values are satisfactorily matched.

We formulate the calibration problem as a
state space search problem to facilitate the

is matched satisfactorily.

explanation and study of the heuristic
strategies that we developed. Under the state
space representation, problem solving is
viewed as a search through the state space to
find a sequence of operators that can
transform a given initial state to a particular
goal state.

Let n be the number of control parameters,
and m be the number of target parameters.
We use G for I < | < n to denote a control
parameter. and Tifor I < j < m to denote a
target parameter. We also use D for 1 < | <
m to denote a data value to be matched by
the target parameter 7;, and L for I <1 < m
to denote the error tolerance value for 7i. A
state s in the calibration state space is
determined by the values of all the control
parameters. Each target parameter is a
function of G's, and the value of a target
parameter 7; in a state s is denoted by 77. A
state s is called a goal state if |7~ Dj| ( L for
1 < i < m. Given an arbitrary initial state,
calibration is a search process for finding a
sequence of operators that can transform the
initial state to a goal state where all the
target values are matched satisfactorily. For
GESIM model calibration. we have two
operators which are SET(C, x) and ADJUST
(GTixy). The operator SET assigns a value x
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to G. transforming a given state into a new
state such that G= x. The ADJUST operator
changes the value of G iteratively until it
finds a state s such that [T x| < y.

The above problem formulation helps us to
appreciate the degree of complexity of the
problem and to understand the necessity of a
heuristic approach. In addition, the
formulation makes it easier to identify a set
of heuristic search control strategies for
reducing the search.

L. Heuristic Search Control in Calibration

This section explains in detail the three
heuristic control strategies, as well as
measures taken to overcome the inherent
limitations of the hill-climbing search
strategy.

1. Hill-climbing Based on Heuristic
Distance Estimation

Hill-climbing is a well-known heuristic search
control strategy. ® It is also often referred to as
“steepest-ascent search” or ‘gradient search’.
According to the hill-climbing strategy, the
selection of a state to move to among different
alternatives during search is made by the
estimate of how close a state is to a goal state.
Hill-climbing is the best choice in calibration
problem solving because we can easily provide
an intuitive and efficient state evaluation
function for estimating the distance from any
state to a goal state. In fact, because of the
complexity of the problem, we cannot afford a
best-first search or any other systematic search
algorithms. The distance estimation function is
defined as follows:

d(s)= id,"'
i=0

where m is the number of the target
parameters, and
77 - D)/ L, if

T —D)/ L >1

0 otherwise
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As can be seen from the above definition,
the distance from a state toa goal state is the
sum of distances of individual target
parameters. This distance estimation is
dimensionless and is measured as a multiple of
individual tolerance interval lengths. The
distance is larger than 1 if there exists at least
one target parameter whose value does not fall
into the tolerance interval associated with its
target data value. The distance equals 0
otherwise. By applying ADJUST operator to a
state, one can typically reduce the distance of
at least one target parameter with respect to its
target value to 0 by adjusting a control
parameter within its valid range. With this
estimation function, the hill-climbing strategy
can be described as follows: At any state s, find
i such that o =mas {d;}. Then, select a control
parameter G for the complete binding of
operator ADJUST(C,T.D,L). Some heuristic
rules need to be applied to select the best
control parameter to adjust. The selection
heuristic in general can be different from
model to model and will not be discussed in
detail in this paper.

2. Incremental Solution Refinement using
Dynamic Tolerance Window

Two problems emerged when we tried to
apply the hill-climbing search control
strategy alone. First, for a model like
GESIM. it can be difficult for a target
parameter to attain the corresponding target
value if the other target parameters are too
far away from their respective target values.
Second. after a target parameter is perfectly
matched with its target value, if another
target parameter is far away from its target.
then the subsequent step matching the
second target parameter will very likely undo
the matching of the first target parameter.
This naturally led us to adopt an increméntal
problem solution refinement strategy as
described in the following.

At the beginning of a calibration, relax the
goal condition by enlarging the target

Frelas 2 VA e 6% Al 2l B A

(1135)

81

parameter tolerance intervals. When the
relaxed goal condition is satisfied, then
tighten the goal condition to some degree and
repeat the calibration process again until the
very original goal condition is satisfied. This
strategy is implemented by using a dynamic
tolerance window associated with each target
parameter. The window for target parameter
Ti is defined as an interval [Di - Lixa, Di +
Li *a] . where « is the knob used to control
the window size. As can be seen, the value
of «a
whereas the actual window sizes can be all
different due to the differences in the
tolerance intervals. With the GESIM
calibration. the initial value for @ is set to 3,
and is decreased by 1 each time the goal
condition associated with the current window
size is satisfied.

Initially, this dynamic tolerance window
was adjusted in one direction only, namely,
its size can only be reduced. It was found.
however, when the calibration program
reaches a “local maximum’,

is the same for all the windows,

increasing the
tolerance window size can help to escape this
trap. A state is classified as a local maximum if
from that state. the ADJUST operator
“favored” by the heuristic cannot successfully
match a target parameter with its target
value. Whenever such a “local maximum”’ is
detected. the tolerance factor is increased
until the tolerance window reaches the size
such that any further increment makes all
the goal conditions trivially satisfied. It is
typical that., with this new window, a
different target parameter, will be “favored”
and selected.

Consequently. the calibration process is
guided into a quite different direction. This
strategy may still fail in some situations. A
radical change of state is then necessary in
order to escape the “local maximum”. To
achieve that. each control parameter is
independently perturbed by a random factor,
and then the search starts over again. The
SET opertor is used to assign a new value to
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each parameter. This combination of window
change and random state perturbation have
proved to be a very effective strategy in
escaping from ‘local maxima’ during a search.

3. Ordering Calibration Target Parameters

A serious problem affecting the efficiency
of a calibration process is that the matching
of a target parameter can often undo the
matching of another parameter. This problem
can cause the calibration process to “thrash”,
or go in cycles. repeatedly matching the same
subset of target parameters.

The third search control strategy is to
essentially identify the mutual interference
among the target parameters and then use
the information to override the target
parameter selection based on the state
distance estimation function. For example, if
whenever the calibration program changes T.
T gets affected by a significant amount, but
not vice versa, then a heuristic rule is that T
should be matched first. The reason is simply
that if T is chosen first for the matching,
then matching 7 at sometime later will very
likely undo the matching of 7t however
matching 7 after T will less likely affect the
value of Ti. To represent this kind of mutual
interference in general, we define a relation,
denoted by ORDER. over a set of target
parameters such that ORDER(T, T) is true if
and only if changing 7: will cause T; to change
a significant amount, while changing 7, may
only affect T by a negligible amount.

To incorporate this ordering relation among
target parameters into the procedure for
selecting target parameters, the procedure is
modified as follows: For a state s, first, a
target parameter, say T.. is selected as a
reference based on the distance measure
described above. Then. the ordering relation
is checked to see whether or not there exists
any other target parameter, say T. such that
ORDER(T,T) is true, and & » 0. If such a
target parameter 7, is found. then select T to
be the new reference parameter and repeat
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the step again. Otherwise. keep Ti as the
reference parameter and continue the
calibration process.

With the combined search heuristic for the
calibration process, the efficiency of the

"calibration program is greatly improved. The

remaining problem is how to acquire the
knowledge about the mutual interference
between the parameters and construct an
ORDER relation based on the acquired
information. This issue is addressed in the
next section.

V. Learning the Ordering Heuristics

Although the ordering heuristic is very
important to the efficiency of the calibration
process, it is very difficult to derive even for
the domain experts. Even harder is the
generation of heuristic rules that are
dependent on state conditions. This naturally
led us to look for a machine learning
technique as a means of acquiring such
heuristics. Based on the observation of model
output after changing control parameters to
various different states, a learning system is
expected to derive general ordering rules. The
rules should reveal a plausible ordering of
parameter adjustment and the condition
under which the ordering holds.

1. Appropriate Approach to Learning in
Calibration Domain

There have been significant research results
reported under the topic of deriving subgoal
ordering rules for efficient search control.
The reasoning approach by Cheng and Irani *
% and the problem space compilation method
by Etzioni ™ analyze the preconditions and
postconditions of problem operators and
derive a partial ordering on the set of
subgoals to avoid goal interferences. Minton's
EBL (Explanation-Based Learning) ¥ and the
goal stack analysis method by Ryu and Irani
1% Jearn goal ordering rules from analysis of
search traces which led to either successes or
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failures. Common to all these analytical
approaches is the assumption that a clear
model of the domain problem is available in
the form of a well-defined set of problem
operators. The effect of making a move in
search space under a certain condition is
clearly predictable and thus the overall
system behavior can be analyzed.

Unfortunately. for the engine model
calibration. our knowledge of underlying
physics of the model is often far from
sufficient to make possible accurate
prediction of the model 's behavior. In other
words, we can hardly predict effects of
matching a certain target parameter on the
rest of the target parameters in various
different states. Even after observing these
effects. we cannot explain exactly how they
happened. Therefore, none of the above
mentioned analytical methods directly applies
to our problem of deriving ordering rules for
search control. We could only take a data-
driven approach in which we rely on our
collection of data obtained through many
runs of the model to empirically derive or
learn ordering rules. These rules are
supposed to be useful for determining the
order that minimizes mutual interference
under any state condition.

Each data point resulting from running the
model is described by the model input and
output which are the state information and
the effect on target parameters. respectively.
A lot of such data serve as training examples
from which an empirical learning algorithm
captures underlying regularities in the form
of a set of rules. The state information is
represented by attribute value pairs where
each attribute corresponds to a control
parameter. The effect on the target
parameters is interpreted in such a way that
the ordering relation between each pair of
parameters becomes evident. This interpreta-
tion is essentially an assignment of class
membership to each of the data point. Overall,
our learning problem can be characterized as

s 8% QA
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an empirical and classification type of
learning for which the ID3 algorithm ® is
appropriate. We picked up one of the
extensions of the ID3. called GID3 * ™
our rule learner. In the following, we give a

for

step-by-step illustration of the whole learning
procedure from the generation of the training
data to the derivation of ordering rules for
GESIM calibration.

2. Learning Procedure

First, a set of raw data is collected by
running GESIM under different combinations
of the four control parameters. We form a
group consisting of five runs by first running
one base case and then changing each control
parameter by a certain amount as shown in
Table 1.

Table 1. A group of five GESIM runs: The
first row is theresult of the base
run and the rest show the effect
aftercha-ging each control parameters
to the indicated values.

[ G | G [ T 7 T T,
Brum Hfact | Hjactb || Burn0-10 | Ten-pmaz | Airflow | Tafe
70 | 22 | o7 X}
40 | 22 | o7 10
20 | 25 | o7 1.0
20 | 22 | 11 1.0
2.0 2.2 0.7 1.4

19.74
21.21
19.53
21.43
19.82

17.66
17.58
17.18
18.40
17.65

24.59
24.61
24.47
22.78
24.33

230.82
230.49
231.19
232.77
241.44

To see the effect of changing each control
parameter, percent changes of target
parameter values are calculated for each run
result with respect to the base run result.
The base run result can then be removed
from the data table but the state condition of
the base run is remembered as the state
condition of all the other runs within the
group. Each row in the data table is indexed
such that each index indicates the target
parameter intended to be changed. For
example, in Table 2, the row with index “2"
shows the percent changes in the target
parameters when the second one (Ten-pmax)
is meant to be changed. More generally. the
ith number in the row with index i indicates

(1137)
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the intended effect and the rest in the same
row reflect the side effects.

Table 2. Percent changes of target parameter
values after eachintended change.

T T; Ts Ty
Burn0-10 | Ten-pmar | Airflow | Isfc
7.45 0.47 0.10 0.14
1.06 2,74 0.46 0.16
8.54 4.21 7.36 0.84
0.41 0.06 1.04 4.60

State:
Bnum= 2.0, Celin= 2.2
Hfact= 0.7, Hfactb= 1.0

B R e

We can see from Table 2 that changing
Burn(0-~10 has almost no effect on the others
(row 1). while changing Airflow has
significant side effects both on Burn0-10 and
on Ten-pmax (row 3). To have this relative
level of significance interpreted into a
quantitative measure, we introduce a
threshold denoted by ¢ . Let v be the percent
change of the value of T (th target parameter)
when T was intentionally changed. v appears
as the th value in the ith row of GESIM run
group. If vi/vs ( @ for a small non-negative ¢
v is turned to zero. This allows us to ignore
relatively small side effects. Table 3 shows
the result of applying ¢ = 0.1 to the values
of Table 2.

Table 3. Result of applying = 0.1 to the
percent changes oftarget parameter
values shown in Table 2.

T | T T T.
Burn0-10 | Ten-pmaz | Awrflow | Isfc
7.45 0.00 0.00 0.00
1.06 2.74 0.46 0.00
8.54 4.21 7.36 0.84
0.00 0.00 1.04 4.60

State:
Bnum= 2.0, Celin= 2.2
Hfact= 0.7, Hfactb= 1.0

W e

Table 4. Training data represented by
attribute value pairs.

Data
Category
P12
P13
P14
P23
P24
P34

Class
Assignment
ORDER(T3, 1))
ORDER(T>,T,)
NO-ORDER(T,, T,)
ORDER(T3. T3)
NO-ORDER(T:, Ty)
ORDER(T, . Ty)

State
Celin | Hfact
2.20 0.70
2.20 0.70
0.70
0.70
0.70
0.70

Bnum
2.00
2.00
2.00
2.00
2.00
2.00

Hfactb
1.00
1.00
1.00
1.00
1.00
1.00

Now we are ready to derive ordering
relation between the parameters. To simplify
the problem, we pay attention to a single

O £30%8 BR P LK

pair of parameters at a time. For example,
by comparing the second and the third rows
of Table 3. we notice that changing Ten-
pmax does not affect Airflow as much as
changing Airflow does Ten-pmax. This
observation leads us to the conclusion that
Airflow should be changed before Ten-pmax
in this state. We can make a similar com-
parison for every pair of parameters to assign
ordering. Again, we need a quantitative
measure of the relative significance of
mutual interferences. Let v be the percent
change of the value of 7, upon change of T:
after applying the threshold @ . If vV i > 7
v'3/V jfor some 7 > 1, we say T interferes
with 7, significantly more than T does with
T, thus assigning the ordering ORDER(T.T))
to this parameter pair (note that v = v,
Similarly if Vi//) 7 vi/v% for some 7 = 1.
we can say T interferes with 7' more than T
does T;, thus assigning ORDER(TT). If it is
not any of the two cases, then we conclude
NO-ORDER(T.T) because the interference is
either severe in both directions or not
significant at all. Table 4 shows the result of
assigning ordering relationship to every pair
of target parameters with 7 = 1.5. Note that
the state condition is attached to each
pairwise comparison result. The pairwise
comparison results serve as training data for
the learning program GID3+*. The data
belonging to the same category are collected
together and fed to GID3 * , to derive a set of
ordering rules for the given parameter pair.
Figure 1 shows one such rule which
recommends an ordering under the specified
condition. A total of 105 rules were derived
across all six rule sets with 480 data points
provided per category. These rules can be
used in the following way to minimize
interferences between the target parameters.
When given a state condition in terms of the
values of Bnum. Celin. Hfact, and Hfactb.
each rule set returns the ordering between a
particular pair of target parameters. The
pairwise ordering recommendations from all

(1138)



ey

the rule sets are collected together to derive a
partial ordering of all the target parameters.
This ordering relation is used for selecting
the target parameter to be matched as
explained in Section M-3. The ADJUST
operator is then applied by changing a
control parameter’'s value iteratively until
reaching a specified state. If the state reached is
a goal state, calibration is completed.
Otherwise. the rules are searched again in
this new state and the same process repeats.

If (BnumX7) A (Celin 2.65) A (0.9<Hfact 1.3)
Then ORDER(Airflow. Ten-pmax)

Fig. 1. An ordering rule derived from the
data category P23.

V. Summary and Future Work

ICALIB has been used on a daily basis for
engine model applications, and has reduced
the time required for model calibrations from
many hours to a few minutes on average.
Because of the dramatic speed-up gained for
the calibration process, we found several
calibration cases finished successfully which
were not possible before due to the computing
resource limit.

Although the three heuristics that we use
now work successfully, we have not
sufficiently studied the individual
contribution of each heuristic. More work is
needed to identify the conditions under which
each heuristic plays a major role. so that a
more strategic use of them is possible. We
also need more study of the sensitivity of
learned result to the values of the two
thresholds ¢ and 7. They are used for
judging the relative significance of side
effects and are currently set to values
subjectively determined.

In our current study, interference between
parameters has simply been considered as
harmful. As a matter of fact, there are cases
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where the side effect of a certain adjustment
is helpful in a sense that the affected
parameter ‘s value is moved towards its target
value. Therefore, we need to investigate the
possibility of incorporating this specific
information into the calibration program to
improve its efficiency.

One final item to look into in the future is
the problem of operator selection. For the
GESIM model. we have the right control
parameter, predetermined from the domain
knowledge, to adjust to match each of the
target parameters. In general, more than one
control parameters might need to be adjusted
simultaneously to match a single target
parameter. Even worse, the set may have to
vary from state to state for a calibration to
finish successfully. Again. we believe an
empirical machine learning approach will be
appropriate.
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