Journal of the Korean Nuclear Society
Volume 25, Number 4, December 1993

A Nuclide Transport Model in the Fractured Rock Medium
Using a Continuous Time Markov Process

Y.M. Lee, C.H. Kang, P.S. Hahn, and H.H. Park

Korea Atomic Energy Research Institute

K.J. Lee

Korea Advanced Institute of Science and Technology
{Received June 7, 1993)

Faby)
B dabe A 53

(1993. 6. 7 4-1)

Abstract

A stochastic way using continuous time Markov process is presented to model the one-
dimensional nuclide transport in fractured rock matrix as an extended study for previous work
[1]. A nuclide migration model by the continuous time Markov process for single planar
fractured rock matrix, which is considered as a transient system where a process by which the
nuclide is diffused into the rock matrix from the fracture may be no more time homogeneous,
is compared with a conventional deterministic analytical solution. The primary desired quanti-
ties from a stochastic mode! are the expected values and variance of the state variables as a
function of time. The time-dependent probability distributions of nuclides are presented for
each discretized compartment of the medium given intensities of transition. Since this model is
discrete in medium space, parameters which affect nuclide transport could be easily incorpo-
rated for such heterogeneous media as the fractured rock matrix and the layered porous
media. Even though the model developed in this study was shown to be sensitive to the num-
ber of discretized compartment showing numerical dispersion as the number of compartments
are decreased, with small compensating of dispersion coefficient, the model agrees well to

analytical solution.
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1. Introduction

A stochastic approach by which the concentra-
tion distribution of nuclides in heterogeneous
media could be modeled is using continuous time
Markov process concept. In a companion paper,
Lee et al. [1] have successfully used a continuous
time Markov process to model the nuclide dis-
tributions in one dimensional geological systems.
By extending this concept, the fractured rock mat-
rix can be considered as a series of discretized
compartments and the concentration of nuclides,
or equivalent number of nuclides can be consi-
dered as a time-dependent random variable. Upon
the base of the model in previous paper, we pre-
sent an extended approach, by which transient
system where a process of rock matrix diffusion
from the fracture is considered can be modeled.

A nuclide in a given time interval could make a
transition to any compartment by groundwater
flow or could also disappear from any present
compartment due to, e. g., radioactive decay or
diffusive loss. All these processes are obviously
conditional only on the present location of the
nuclide regardless of its previous history utilizing
the Markov conceptualization of the geologic
system.

Meanwhile, the repository in such crystalline
rock as granite, recently, has been favored be-
cause of highly low permeability of the rock mat-
rix. However, in general, as the fracture offers

principal groundwater flow path due to its higher
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permeability than the rock matrix, nuclide trans-
port will be dominated along the fracture.
Although this is true, the rock matrix adjacent to
the fracture plays an important role in overall nuc-
lide transport. A convenient way to study such
transport is to consider the rock matrix has a sing-
le planar fracture.

Since Neretnieks [2] showed the diffusion into
the rock matrix can enhance retardation of the
nuclide transport along the fracture, many analy-
tical and numerical models are proposed [3, 4].
These studies, however, have been performed in
deterministic way. In this regard, the objective of
this research is to use continuous time Markov
process to describe one-dimensional transport of
nuclides through the fracture in the rock matrix in
the vicinity of the radioactive waste repository.
The primary desired quantities from a stochastic
model are the mean values and variance of the
state variables as a function of time.

2. Nuclide Distributions in the Fracture

A continuous-time Markov process | X (), r>0} is
a stochastic process having the property that the
conditional distribution of the future state j a time
t+s, given the present state ¢ at time s and all past
states, depends only on the present state / and is
independent of the past.

In matrix notation, the relation between the rate
of change of the transition probability and the

intensity of transition is represented as [5]
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%P (7. )=P (7, 1) A (t) 1
and
P (7, 1) =1 (the identity matrix) 2)
where

Pu(t, P17, o) PiMz, 1)
P(r,1)= PZ,(:T, 1) PyiT, 1) PzN(:r, 1)

Pui(z, 1) P, 1) 3)

is the transition probability matrix and

Au () Ay Ainv ()
A= 121: (B A0 }»2/\:/(1)
A (9 2w (1) @

is the intensity function of transition matrix.

As seen in Eq. (4), in transient system where
processes or transition rate of nuclides varies with
time, A(7) may be no more time homogeneous.

A rock matrix system in groundwater-saturated
porous rock of porosity ¢, containing a single
planar fracture of half width b is considered (Fig.
1). The fracture can be considered as a finite
number of N compartments within which com-
plete mixing of nuclides with groundwater takes
place instantly. As considered by Tang et al. [4],
the permeability of the porous matrix is very low
and then transport is dominated in the fracture. In
the rock matrix nuclide transport will be done by
molecular diffusion in the direction perpendicular
to the direction of the axis of the fracture. A
decaying nuclide source locates at the inlet of the
fracture.

The following processes are to be considered
probabilistically to obtain the nuclide distribution
in the fracture: (1) transition by the groundwater
flow, (2) molecular diffusion from the fracture into
the rock matrix, (3) adsorption onto wall of the
fracture and within the rock matrix, and (4)
radioactive decay. Longitudinal dispersion in the
fracture, however, is assumed to be negligible in
this study.
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Fig. 1. Schematic Representation of Discretized Com-
partments of the Rock Matrix System.

Once such geologic system is assumed to have
Markov property, since the Markov process re-
quires that only the present value of the time
dependent random variable (i. e., time dependent
number of nuclides or concentration in certain
compartment) be known to determine the future
value of the random variable, the nuclide trans-
port in geologic media, which is divided by finite
number of geologic compartments N, can then be
modeled as a time continuous Markov process,
which is continuous in time with respect to the in-
dividual

medium.

transport processes but discrete in

At any time 7 € [0, ©), when nuclides add to
the first compartment at rate of {(7), that is equal
to the volumetric flow rate of nuclides into the first

compartment and may be represented as
C(r):Qin CO(T) Vl (5)

where

Q.,—volumetric flow rate of feeding groundwater
into the first compartment(L® T 1)

Col7)=source concentration (L™3)

V,=volume of the first compartment(L3).

As soon as a freshly fed nuclide enters the sys-
tem, it may begin to transfer to one of the other
compartments at once or may disappear. Here we
can assume that all nuclides in the system behave
stochastically and independently one another.

The number of new nuclides that enter the
compartment in time interval d7 is §(7) d7 . If we
consider the number of nuclides that have suc-
cessfully entered the first compartment, then it has
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a respective probability of P, {t—7) that nuclides
exist in j at time ¢, i.e., transition from the first
compartment 1 to compartment j during the time
interval (t— 7). Therefore, a binomial distribution

can be formed for these new nuclides.
Also for large value of &(7) dr, the binomial

distribution is approximated to Poisson distribu-
tion.

Then we can get the distribution of Xy(1), as
defined in previous paper [1], the number of
nuclides remaining in each compartment that have
survived as follows :

4

N
E[X;()] =2mi(0)PEj“)+f {r)Py(t-t)dr  (6)
i=1

(/]

N
Var[X;(1)] = Y, mi (0)P; (1)
i=1

t

(1-Py(0)+ f doypyfe-nde (D)

Therefore, the expected value and variance of
Ci(1), concentration of nuclides in j at time ¢ can
be expressed, respectively, as

E[C; ()] = ———E[x{)(; 2 )
var(G; (9] = Y10 ©)
where

V;=pore water volume of compartment j of the
fracture (L3).

Specifically let’s consider the system of fracture
medium through which nuclide transports and
which can be regarded as a finite number of N
compartments with several processes occurring
simultaneously within them.

The transition probability from a compartment i
to another compartment j is affected by the in-
tensity of transition. This intensity of transition is

related to the process involved. The diffusive
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transport of nuclide which is assumed to be neg-
ligible compared to advective transport for the
media having large Peclet number and another
diffusive loss term into the rock matrix is also
excluded in this case.

For simplicity, further assumptions may be intro-
duced : the groundwater flow is constant and the
groundwater flow and nuclide transport are consi-
dered to be made only between adjacent com-
partments.

Also, on the assumption of the constant feed
rate of nuclide, £(7) of Eq. (5) is can be reduced
to constant & .

The intensity of transition A,(T™') for the
groundwater flow through some pore volume in
porous medium can be written as

ny= (10)

where
Q;=volumetric flow rate from compartment i to
compartment j (L3 T7!)
V;=volume of compartment j (L3).
Assuming that flow is well mixed, the transition
probability due to advection can be written as

h;At+o(Af)=Pria nuclide in  at time ¢ will be in
Jj decayed out at time (r+A#l (11)
Similarly nuclide may decay out from compart-

ment i at a rate represented by decay constant A
{T™Y). Therefore,

A At+o(Af)=Pr {a nuclide in i at time 1 will
be decayed out at time (r+ A7) (12)

Under the assumption of linear isotherm sorp-
tion of nuclides in the compartment i, h; can be
replaced by A;/R;,
where

R - (1 . Bz-’.‘z) 13)

i
¢

,’;=retardation coefficient in compartment i
Pi=bulk density of compartment i (ML™3)
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K~ distribution coefficient in compartment i {L*
M)
$,=porosity of compartment i.
Then
A,,:Z%,iﬂ,z,.-.,)v (14)
i

J#

With these the probability that the nuclide will
remain at time r+ At in ¢ without making any
transition or disappearance is {1—(Z,;=, A ;At+ A
Af)+o(An), from which, if this probability is de-
noted by {1+ A ;At+o(An in case of no diffu-
sive loss into the rock matrix,

li;=—[z%+l}i=l,2,---,N (15)
~ Ri

J#

where A, is interpreted as the negative sum of all
probabilities of exit from compartment i.

When the diffusive loss into the rock matrix in
the direction perpendicular to the fracture from
the fracture is considered in Eq. (15), we should
add corresponding intensities of transition for this
process. To this end diffusion process can be
modeled by Fick's first law and the diffusive loss
term can be represented as the mass flux g(x,¢)
(ML™2 T7!) across the fracture-rock matrix inter-
face, i.e, at z=b (Fig. 1).

Q(X,I)Z“Ppr'aE““p%%_zﬂz:b (16)
where
Colx, z, 1) =nuclide concentration in the rock mat-
rix (L%
$,=porosity of the rock matrix (L3 L%

From one-dimensional analytical solution to
Fick's second law for a homogeneous porous
medium with respect to the radioactive-decaying
source concentration of Cg can be written in the
orthogonal direction, z to the fracture as

Cole: 2 0) _ o arerte

& (vapms) .

where
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D,=pore diffusion coefficient in the rock matrix
LT
Then, the mass rate m(t) (MT™Y) through the
area occupied by compartment i of the fracture
can be derived from Egs. (16) and (17), under the
assumption of constant source concentration Co (1)
in compartment i, as

b2R :
P - P 18
Ryt cxp( 4D, t” o) (18

mi{t)= ¢, A

where
A=area occupied by the fracture wall of the com-
partment | {L3).
Therefore, the intensity of transition for diffusive
loss A i,,fj{ 1) (T™!) into rock matrix can be express-
ed as

Aag (1) = %ﬂ

b2R}
_“r _ P (19)
wRyt eXp‘ 4D, x)}

In this case Eqs. (14) and (15) will be changed,
under the assumption that the transport is consi-
dered to be made only between adjacent com-

partments, into

- [1’1 ‘A A:;.ﬁ(z)], j=i
R}

ﬂ

Rf

0, otherwise (20)

j=i+l

(A=

where
R}: retardation coefficient in the fracture, which is

defined as
Ri=1+5 21)
where

K: =surface distribution coefficient in the fracture
in compartment i (L).

With the time-dependent intensities of transition
in Eq. (20), the Eq. (1) is no more time-
homogeneous, resulting the situation where analy-
tical solutions for Eq. {1} in closed form as for the

time-homogeneous case may not exist. According-
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ly a solution scheme, among others, can be consi-
dered in similar way to the case of evaluation by
discrete time approach of the state variable equa-
tions for the time-varying linear system as intro-
duced in Appendix. [6]

3. Numerical Illustration

Since the model presented here must be very
sensitive to the number of compartments of the
system, in other words, the numerical dispersion
phenomena will increase according to decreasing
N, some quantitative estimation in the relation
between N and the dispersion coefficient must be
prerequisite. To this end in Appendix an analysis
is made, which gives useful inference for the
calibration of the model.

From Fig. 2 for a profile of arbitrary nuclide it is
known that some computation results for the sys-
tem whose parameter values are listed in Table 1
by the present model with varying numbers of
compartments of 10, 20, 30, and 50, are agreed
well with a deterministic analytical dispersion
model (Eq. (A7))[1,7] with equivalent dispersion
coefficients of 50.0, 25.0, 16.7, and 10.0, respec-
tively, which are obtained according to Eq. (A9).
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Fig. 2. Comparison of the Numerical Results by Con-
tinuous-time Markov Model for Varying Num-
ber of Compartments, N, with Corresponding
Analytical Solutions for Equivalent Dispersion
Coefficients.
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Also, in Fig. 3, the concentration profiles by the
present model for several different times are
shown. It is easily seen that in both cases with and
without retardation and radioactive decay, there
exists excellent agreement between the results us-
ing the present model and the analytical solutions.

To demonstrate the use of the present model
and to verify the model by comparing with the
deterministic model, a specific illustration was
made for single-fractured rock medium with con-
stant groundwater flow rate in the fracture.

For single-fractured rock matrix system with
process of diffusive loss into the rock-matrix from
the fracture, the parameter values needed are
shown in Table 2.

The deterministic differential equation governing
the nuclide transport in the facture with rock mat-
rix diffusion can be given (4]

Table 1. Input Parameters( | )

R 1.0(5.0)
L{m) 100
A(1/yr) 0.0(0.693/30.2)
q/$(m/yr) 10.0
N(for Markov model) 10, 20, 30 50
D{=ig L/2¢N for analytical
solution, Eq.(A9)) 50, 25, 16.7, 10
Table 2. Input Parameters( ] )
R, 1.0(5.0
R, 1.0(5.0
L{m){along the fracture) 100
A(1/yr) 0.0(0.693/30.2)
a/$ m/yx) 10.0
Ddm?/yr) 25.0
Nifor Markov model) 20
D (m?/yr) 5X1073
b(mj 1x10°3
Tiyr) 10(25,33,42,50




A Nuclide Transport Model in the Fractured Rock Medium---Y.M. Lee, et al 535

o
=3

0

: Analytical solutiorn
[no Tetardation; no decay)

o
o

~~ Analyticsl solution
(s.s 0; -0.69330.2 yr' ')
Symbols : Continuous-time Markoy model

Normmaiized concentration,
cxnic
=3
>

0.2

0.0
4] 20 40 60 80 100

Distance, x (m)

Fig. 3. Concentration Profiles by Continuous-time Mar-
kov Model with and Without Retardation and
Radioactive Decay Compared to Analytical
Solutions for Different Times. The Numbers on
the Curves Represent Time.

RS .94 p —J ARCylx, i) + "' 4.0 (22)

4 or ¢f ox

where

Ce(x,t)=nuclide concentration in the fracture
(L3

and g(x, ¢ is given in Eq. (16), in which C,(x, z,

t) is governed by following Eq. (24).

R,-:l«l-%l (23)

Similarly, the equation describing the transport of
nuclides within the rock matrix is

aCc, . ¥C,

Ry=2 - Dp—~ 2 ARGCylx, 2,§ =0 (24)

where
D,=molecular diffusion coefficient in the rock
matrix (L% T°Y)
and R, is defined as the same way as Eg, (13).
The solution of Egs. (22)-(24) subject to follow-
ing initial and boundary conditions is available [4]

Cr(0, 1)= Co et (25)
Crlos, t)=0 (26)
Crlx,0)=0 27)

Cplx, b, t)=Cslx, 1) 28)
Cplx,o0,1)=0 (29)
Cp(x,2,0)=0 (30)

The expected values of concentration profile
predicted by the present model are shown in Fig.
4 as a function of distance along the fracture from
the inlet of the rock-matrix system. There, the
concentration profile in exact case for no disper-
sion in the fracture is also shown for reference. In
order to evaluate Eq. (1) having inhomogeneous
intensity of transition, discrete time approximation
scheme represented by Egs. (A4) and (A5) in
Appendix was used.

As for the size of discrete time step T, it is not
so effective for the accuracy of the solution even
when very small size of T is used as is easily seen
in Fig. 5, where two groups of breakthrough
curves, each of which is the results at the distance
of 20 and 80 m, respectively, are depicted for
cases differing in 7. In this regard, no special
efforts to find out the proper discrete time size
was not made to improve the results. Therefore,
in this illustration for calculation at time 1=5.0 yrs,

08 - -
B = : Analytical salution

{no retargation; no decay)

: Ang)

N -

ytical solution
(R'-R =5.0; A=0.693/30.2 yr’ Bl
Symbols : Continuous-time Markov model

Normalized concentration,
C’(x,z-ﬂ,l) t Co

. - . With dispersion
3 Without dispersion

" inthe rsctre in the ractwre J
02 '

*

TR e l ’
0 20 40 60 80 100
Distance along the tracture, x {m)

0.0

Fig. 4. Concentration Profiles by Continuous-time Mar-
kov Model with and Without Retardation(Both
in the Fracture and in the Rock Matrix) and
Radioactive Decay Compared to Analytical
Solutions.
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Fig. 5. Breakthrough Curves by Continuous-time Mar-
kov Model for Varying Discrete Time, T at the
Distances of 20m and 50m Compared to
Analytical Solutions. The Numbers Represent
Discrete-time Size.

Normmalized concentration,
C(x2=0.1)/Cy
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Fig. 6. Comparison of the Numerical Results by Con-
tinuous-time Markov Model at the Distance of
20, 50, and 80m Along the Fracture with the
Corresponding Analytical Solutions. The Num-
bers Represent Distances.

5 time steps used resulting each discrete time step
of 1.0. To verify the results, an analytical solution
developed by Tang et al., to Egs. (22) through
(30) is used with numerical integration using Gaus-
sian quadrature scheme. Fig. 6, which is calcu-
lated at the distances of 20, 50, and 80 m for the
cases with and without retardation and radioactive
decay, exhibits relatively good agreement between

dJ. Korean Nuclear Society, Vol. 25, No. 4, December 1993

continuous-time Markov process model developed
in this work and the analytical solution. However,
some discrepancy appears in all breakthrough
curves in this figure becoming more severe as
much as going far from the inlet, which may be
probably due to insufficient discretization of space

and time.

4. Conclusions

Through this study a stochastic modeling using
a continuous time Markov process for one-

dimensional transport of nuclides through the rock
matrix around the repository has been made. By

calculating the time-dependent transition probabil-
ity of nuclide from the intensity of transition be-
tween, into, and/or from the compartments, the
expected value of distribution of nuclide concen-
tration can be obtained as well as its variance.

Since this model is discrete in medium space,
physical and geochemical parameters including
groundwater velocity, dispersion coefficient, re-
tardation coefficients, and losses due to radicac-
tive decay or diffusion out of the system, which
affect nuclide transport, can be easily incorporated
for such heterogeneous media as the fractured
rock medium having spatially varied parameters.

Even though the Markov process model de-
veloped in this study was shown to be sensitive to
the number of discretized compartment showing
numerical dispersion as the number of compart-
ments are increased, with small compensating of
dispersion coefficient, the model agrees well to
analytical solution.

Therefore, using this model statistical distribu-
tion of the nuclide within the discrete compart-
ments of heterogeneous media around the reposi-
tory could be well modeled by discretizing the
media considering the degree of variation of the
parameters when compensating for dispersion
coefficient.
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Appendix

1) Evaluation of P;(t) and Nuclide Distribution by
Discrete Time Method

If Aug(t) is assumed to be piecewise constant
over the small time interval [1,1;) such that
AggfT)= A aigr{nT)=constant,

e [nT,(n+1)T), n=12,3,- (A1)

where
T=discrete time interval (T).
and 1y and t; are selected as

t0=nT (AZ)
Hh={n+1)T (A3)

then the nuclide distribution by Eq. (31) at time £
with constant { will be expressed as

N
E[X;[(n+ 1)T]]) =2, mi(nT) Py [(n+1)T)

i=1

(n+ 1)T
+§f Pil(n+))T - t1dr (A4)
nT

where P; [(n+1) T], the transition probabilities
can be obtained, from the solution of Egs. (1) and
(2) in case of constant A[1], as

Pln+1)T]=eATP(nT) (AS)

Then each term of R. H. S. represents the num-
ber of survived nuclides and the number of nuc-
lides newly entered during time interval T, respec-
tively.

2)Derivation of a Correlation Between N and D

For simplicity let's consider the one-dimensional
system which is divided into N compartments of
equal size with the only one process of advective
transport. For such systemn, the mass balance

around the ith compartment gives

Ci-Ciy)

N5 = 0l
-2
2

(Cis1-2Ci+Ciy)- %(CH,} -Cia) (A6)

where

V=total volume of compartments (L3)

Q=constant flow rate of groundwater from one
compartment to another adjacent one (L3 T7Y)

C;=concentration of compartment i (L™3).

A common advection-dispersion model is
given in Eq. (A7) for homogeneous porous
medium
aC _C _aC
y-Daxz-v—a; (A7)
which can be approximated by the centered differ-

ence equations by means of Taylor expansion as

Qa(—';‘;E (—A‘e?(cm -2Ci+Cia)- Q_ALx(CM - Cit} (A8)
where
A x=differential x (L)
v=velocity of groundwater determined by ¢/ ¢ (L
T
By comparing Egs. (A6) and (A7) and letting A
x=L/N where L is the length of the system,

following approximate equivalence will be

obtained:

—vL
D=3w (A9)
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