# Kinetics and Stereochemistry of CO Substitution Reactions of Half-Open Chromocene Carbonyls (III): Reactions of $Cp^*(\eta^5-C_5H_7)CrCO$ and Phosphines

## Jong-Jae Chung\*, Byung-Gill Roh, and Yu-Chul Park

Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 702-701 Received October 15, 1992

The CO substitution reactions in the complex,  $Cp^*(C_5H_2)CrCO$  with  $PR_3(PR_3 = PMePh_2, P(OCH_3)_3$ ,  $PMe_2Ph)$  were investigated spectrophotometrically at various temperatures. For the reaction rates, it was suggested that the CO substitution reaction took place by first-order (dissociative) pathway. Activation parameters in decaline are  $\Delta H^2 = 21.99 \pm 2.4$  kcal/mol,  $\Delta S^* = -8.9 \pm 7.1$  cal/mol·k. Unusually low value of  $\Delta S^2$  suggested an  $\eta^5 \cdot S \rightarrow \eta^5 \cdot U$  conversion of the pentadie-nyl ligand. At various temperature, the rates of reaction for the Cp(pdl)CrCO complexes increase in the order Cp\*(C\_5H\_7)-CrCO<Cp(C\_3H\_7)CrCO<Cp(2,4-C\_7H\_{11})CrCO, which can be attributed to the usual steric acceration or electronic influence for the ligand substitution of metal complexes. This suggestion was confirmed by the extended-Hückel molecular orbital (EHMO) calculations, which revealed that the energy of  $[Cp^*(U-C_3H_7)CrC]^2$  transition state is about 4.93 kcal/mol lower than that of  $[Cp(S-C_3H_7)CrC)>Cp(C_3H_7)CrC)>Cp(C_3H_7)CrC)>Cp(C_3H_7)CrCO>Cp(C_3H_7)CrCO.$ 

#### Introduction

The area of metal-pentadienyl chemistry has recently been attracting growing attention, and a number of reviews covering various aspects of this field have appeared.<sup>14</sup>

The cyclopentadienyl ligand is well-renowned for its utility as a "stabilizing ligand", as it has yielded many very thermally stable compounds. Most notable among these are the metallocenes or bis (cyclopentadienyl) metal complexs.<sup>5-9</sup> While a number of reports dealing with metal-pentadienyl complexs had appeared prior to 1980 (cide infra), there was little if any indication or recognition that pentadienyl ligands by themselves might lead to a variety of potentially useful carboncarbon bond-forming (coupling) reactions.

We reported the kinetics studies and EHMO calculation of reaction between Cp(C<sub>5</sub>H<sub>7</sub>)CrCO and PR<sub>3</sub> (PR<sub>3</sub>=PMe<sub>2</sub>Ph, P(OCH<sub>3</sub>)<sub>3</sub>, PMePh<sub>2</sub>) and Cp(S-2,4-C<sub>7</sub>H<sub>11</sub>)CrCO. In this reports,<sup>17</sup> the 18-electron half open complexes, Cp(S-C<sub>5</sub>H<sub>7</sub>)CrCO, and Cp(S-2,4-C<sub>7</sub>H<sub>11</sub>)CrCO underwent predominantly CO substitution at various temperatures by a dissociative mechanism and involved the role of the pentadienes (C<sub>5</sub>H<sub>7</sub> and 2,4-C<sub>7</sub>H<sub>11</sub>). This results were conformed by EHMO calculations.

R. M. Kowaleski, etc. reported synthesis, kinetics, and mechanism of ligand substitution of reactions 17-electron-halfopen Vanadium carbonyl complexes Cp(pdl)VCO, where Cp is cyclopentadienyl and pdl is pentadienyl.<sup>16</sup> They reported that carbonyl substitution reactions of the Vanadocene, Cp<sub>2</sub> VCO and decamethyl vanadocene carbonyls, Cp<sup>\*</sup><sub>2</sub>VCO proceeded by an associative mechanism, but the mixed n<sup>5</sup>-ligand complexes, Cp(pdl)VCO reacted at elevated temperture by a CO-dissociative pathway. The difference of these mechanisms must be attributed to the structural and electronic features which prohibit associative reaction pathway for the pentadienyl complexes, but allow it for Cp<sub>2</sub>VCO and Cp<sup>\*</sup><sub>2</sub> VCO.

The goal of the present study has been to elucidate the mechanism and the effect of the five methyl groups on the  $Cp^{\bullet}$  (ligand for reactions between  $Cp^{\bullet}(C_5H_2)CrCO$  and  $PR_3(PR_3)$ 

= PMe<sub>2</sub>Ph, P(OCH<sub>3</sub>)<sub>3</sub>, PMePh<sub>2</sub>). Kinetics studies and EHMO calculation reported in this work, allow us to characterize the mechanism and the effect of the five methyl group on the Cp<sup>\*</sup> ligand of CO substitution reaction for 18-electron half open chromocene carbonyl. In order to get further insight into the CO substitution reactions between Cp<sup>\*</sup>(C<sub>5</sub>H<sub>7</sub>) CrCO and PR<sub>3</sub>, we have analyzed the electronic structure, the overlap population, the orientation preference of C<sub>3</sub>H<sub>7</sub>, the role of C<sub>5</sub>H<sub>7</sub>, and the effect of the five methyl groups on the Cp<sup>\*</sup> ligand in the reaction of Cp<sup>\*</sup>(C<sub>5</sub>H<sub>7</sub>)CrCO and PR<sub>3</sub> by extended Hückel molecular orbital calculations.

#### Experiment

**General Procedures.** The half-open chromocenes are very air sensitive and sometimes pyrophoric. All compounds were therefore prepared, handled and stored under nitrogene gas in a glove box, while solutions were generally manipulated on a high vacuum or Schlenk tube under  $N_2$ , Ar and CO. The synthesis of half-open chromocenes were prepared by published procedures.<sup>11</sup> The various dienes and phosphines were purchased from Aldrich and Fluca.

**Kinetics CO substitution reation between Cp<sup>\*</sup>(C<sub>5</sub>H<sub>7</sub>) CrCO and PR<sub>3</sub>.** Solution of Cp<sup>\*</sup>(C<sub>5</sub>H<sub>7</sub>)CrCO of about  $5 \times 10^{-4}$ mol was prepared under N<sub>2</sub> and Ar gas. The absorption at 490 nm was monitored with time by Shimadzu 265 UV-spectrophotometer at various temperatures. Plots of ln A vs. time were linear for at least three half-lives and  $k_{obsd}$  was determined by the least-squares method from the slope of this line. Activation parameter,  $\Delta H^*$  and  $\Delta S^*$  were respectively calculated by the least-squares method from the plot of  $\ln(k/T)$ vs. 1/T, where T is temperature and k is a first-order rate constant.

**Molecular Orbital Calculation.** The calculations were carried out with extended Hückel MO calculations with weighted Hij's.<sup>12,13</sup> The Cr parameters given by Summerville and Hoffmann were used.<sup>14</sup>



**Table 1.** Rate Constants,  $k_{obsd}$  of CO Substitution Reaction for Cp\*(C<sub>5</sub>H<sub>7</sub>)CrCO and PR<sub>3</sub> at Various Temperatures in Decaline

| Temp(°C) —                        | Concentration of $PR_3$ (M) |                       |                       |  |  |  |  |
|-----------------------------------|-----------------------------|-----------------------|-----------------------|--|--|--|--|
|                                   | 5.0×10 <sup>-3</sup>        | 7.0×10 <sup>-3</sup>  | 10.0×10 <sup>-3</sup> |  |  |  |  |
|                                   | PM                          | le <sub>2</sub> Ph    |                       |  |  |  |  |
| 25                                | 4.66×10 <sup>-6</sup>       | 4.72×10 <sup>-6</sup> | 4.60×10 <sup>-6</sup> |  |  |  |  |
| 35                                | 1.59×10 <sup>-5</sup>       | 1.62×10 <sup>-5</sup> | $1.64 	imes 10^{-5}$  |  |  |  |  |
| 45                                | $5.72 \times 10^{-5}$       | 5.73×10 <sup>-5</sup> | $5.67 \times 10^{-5}$ |  |  |  |  |
| 55                                | 1.49×10 <sup>-4</sup>       | $1.58 \times 10^{-4}$ | $1.50 	imes 10^{-4}$  |  |  |  |  |
| 65                                | 4.43×10 <sup>-4</sup>       | 4.45×10 <sup>-4</sup> | 4.39×10 <sup>-4</sup> |  |  |  |  |
| P(OCH <sub>3</sub> ) <sub>3</sub> |                             |                       |                       |  |  |  |  |
| 25                                | $4.77 	imes 10^{+6}$        | 4.59×10 <sup>-6</sup> | 4.67×10 <sup>-6</sup> |  |  |  |  |
| 35                                | 1.61×10-5                   | $1.60 \times 10^{-5}$ | $1.64 \times 10^{-5}$ |  |  |  |  |
| 45                                | 5.70×10 <sup>-5</sup>       | 5.66×10 <sup>-5</sup> | $5.61 	imes 10^{-5}$  |  |  |  |  |
| 55                                | 1.66×10 <sup>-4</sup>       | 1.62×10-4             | 1.59×10-4             |  |  |  |  |
| 65                                | 4.37×10 <sup>-4</sup>       | 4.44×10 <sup>-4</sup> | 4.39×10 <sup>-4</sup> |  |  |  |  |
|                                   | PM                          | lePh2                 |                       |  |  |  |  |
| 25                                | $4.64 	imes 10^{-6}$        | $4.65 \times 10^{-6}$ | $4.60 	imes 10^{-6}$  |  |  |  |  |
| 35                                | $1.65 \times 10^{-5}$       | $1.70 \times 10^{-5}$ | $1.63 	imes 10^{-5}$  |  |  |  |  |
| 45                                | $5.68 \times 10^{-5}$       | $5.66 	imes 10^{-5}$  | $5.67 	imes 10^{-5}$  |  |  |  |  |
| 55                                | $1.53 \times 10^{-4}$       | $1.57 \times 10^{-4}$ | $1.60 	imes 10^{-4}$  |  |  |  |  |
| 65                                | 4.49×10 <sup>-4</sup>       | 4.44×10 <sup>-4</sup> | 4.42×10 <sup>-4</sup> |  |  |  |  |

 $[Cp^*(C_5H_7)CrCO] = 5 \times 10^{-4} M$ 

## **Results and Discussion**

**Kinetic Studies.** As the neutral pentadienyl fragment may donate five electrons to a metal and possesses molecular orbitals quite similar in nodal properties to the cyclopentadienyl fragment, it is natural that there should be some relationships between their analogous compounds with respect to stoichiometry, structure, and bonding. However, such similarities should not be expected to carry over to reaction chemistry given the arometic nature of the cyclopentadienyl anion and the much different  $\pi$ -orbital energies of the two dienyl fragments. In this key respect, the pentadienyl unit is much more similar to the allyl group, as both are nonaromatic, but have odd alternant delocalized  $\pi$  systems, resulting in a Single Occupied Molecular Orbital (SOMO) for the radical which is nonbinding.

The half-open chromocene adducts were assigned in the highly unusual  $\eta^5$ -S (S=sickel) configuration (*e.g.* 1)<sup>11</sup>, which were opposite the normal configuration for the titanium and vanadium analogues (*e.g.* II)<sup>11.14</sup> in Scheme 1. The structure for half-open chromocenes exist in normal compounds (*e.g.* III and IV).

Kinetic parameters for the reactions of  $Cp^*(C_5H_2)CrCO$ with PR<sub>3</sub>, where  $Cp^* = 1,2,3,4,5$ , pentamethyl-cyclopentadiene and PR<sub>3</sub> = PMe<sub>2</sub>Ph, P(OCH<sub>3</sub>)<sub>3</sub> and PMePh<sub>2</sub> were obtained (Eq.

**Table 2.** Activation Parameters of CO Substitution Reaction in the  $\eta^{s}$ -S-Half-Open Chromocene Carbonyls in Decaline

| Complexs                                                 | $\Delta H^{*}$ . (kcal/mol) | $\Delta S^*$ , (cal/mol·k) |
|----------------------------------------------------------|-----------------------------|----------------------------|
| Cp(C <sub>5</sub> H <sub>7</sub> )CrCO                   | 24.3± 1.1                   | 3.1± 3.2                   |
| Cp(2,4-C7H11)CrCO                                        | $22.0\pm0.7$                | $-3.8 \pm 1.9$             |
| Cp*(C <sub>5</sub> H <sub>7</sub> )CrCO                  | $21.2 \pm 2.4$              | $-8.1\pm7.1$               |
| Cp(3-C <sub>6</sub> H <sub>9</sub> )CrCO                 | $25.7\pm0.6$                | $3.7 \pm 1.8$              |
| Cp(C <sub>6</sub> H <sub>7</sub> )VCO <sup>16</sup>      | 28.8                        | 11                         |
| Cp(2,4-C <sub>7</sub> H <sub>11</sub> )VCO <sup>16</sup> | 27.9                        | 9                          |
| Cp <sub>2</sub> Ti(CO) <sub>2</sub> <sup>14</sup>        | 27.9± 1.8                   | $15.0 \pm 5.6$             |
| Cp <sub>2</sub> Zr(CO) <sub>2</sub> <sup>14</sup>        | $12.0 \pm 0.4$              | $-31.2 \pm 1.4$            |
| Cp <sub>2</sub> Hf(CO) <sub>2</sub> <sup>14</sup>        | 15,2± 0.6                   | $-31.0\pm1.2$              |

1).

$$Cp^{*}(C_{5}H_{7})CrCO + PR_{3} \rightarrow Cp^{*}(C_{5}H_{7})CrPR_{3} + CO$$
(1)

All of these reaction are first order for substrates and zero order for nucleophiles in various concentrations of phosphine. The observed rate constants,  $k_{obsd}$ , for the substitution reaction of Cp\*(C<sub>5</sub>H<sub>7</sub>)CrCO with PR<sub>3</sub> at various concentrations are given in Table 1.

As shown in Table 1, the rate constants in not only the various concentrations, but also various nucleophiles tended to be almost the same, which meant that they were independent to nuclophile concentrations and nucleophile species. This kinetic data suggested that the rate-determing stap is a bond-breaking step of Cr-CO bond in transition state.

The activated enthalphy  $(\Delta H^{*})$  and the activated entropy  $(\Delta S^{*})$  from linear plots of ln  $(k_{obsd}/T)$  vs. 1/T were obtained.  $\Delta H^{*}$  and  $\Delta S^{*}$  are listed in Table 2.

The observed values could be the evidence of the classic dissociative type of process, like those of  $Cp(C_5H_7)CrCO$  and  $Cp(2,4-C_5H_7)CrCO$ , which was reported in previous papers. Thus, the 18-electron half-open complexe,  $Cp^*(C_5H_7)CrCO$ , undergoes predominantly CO substitution at various temperatures by the dissociative mechanism.

**Mechanism of CO Substitution Reaction.** A possible mechanism of CO substitution reactions for half-open chromocene carbonyl is given by following scheme.



The order of rates of reaction for Cp(Pdl)CrCO and PR<sub>3</sub> is given by Cp\*(C<sub>5</sub>H<sub>2</sub>)CrCO<Cp(C<sub>5</sub>H<sub>2</sub>)CrCO<Cp(2,4-C<sub>2</sub>H<sub>11</sub>) in Table 3. It is suggested that the major effects of CO substitution reaction are steric repulsion and electronic influences.

For the  $Cp(2,4-C_2H_{11})CrCO$  compound, the major effects of CO substitution reactions are sterric repulsion between one of 2- or 4-methyl groups on pentadienyl and metal-CO

Bull. Korean Chem. Soc., Vol. 14, No. 5, 1993 551

**Table 3.** Rate Constants,  $k_{obsd}$  of CO Substitution Reactions for Half-Open Chromocenes and PR<sub>3</sub> at Various Temperatures in Decaline

| Complexer                                            | Temo(ዮ ) | Concentration of PR <sub>3</sub> (M) |                       |                       |  |  |  |
|------------------------------------------------------|----------|--------------------------------------|-----------------------|-----------------------|--|--|--|
| Complexes                                            | Temp(¢)  | 5.0×10 <sup>-3</sup>                 | 7.0×10 <sup>-3</sup>  | 10.0×10 <sup>-3</sup> |  |  |  |
| Cp(C <sub>5</sub> H <sub>7</sub> )CrCO               | 25       | 5.69×10 <sup>-6</sup>                | 5.72×10-6             | 5.63×10 <sup>-6</sup> |  |  |  |
|                                                      | 35       | $2.00 \times 10^{-5}$                | $2.03 \times 10^{-5}$ | $2.00 \times 10^{-5}$ |  |  |  |
|                                                      | 45       | $1.01 \times 10^{-4}$                | 1.10×10 <sup>-4</sup> | 1.01×10 <sup>-4</sup> |  |  |  |
|                                                      | 55       | 2.73×10 <sup>-4</sup>                | 2.83×10 <sup>-4</sup> | $2.80 	imes 10^{-4}$  |  |  |  |
|                                                      | 65       | 8.53×10 <sup>-4</sup>                | 8.58×10 <sup>-4</sup> | 8.51×10 <sup>-4</sup> |  |  |  |
| Cp(2,4-C7H11)CrCO                                    | 25       | 6.02×10 <sup>-5</sup>                | 6.02×10 <sup>-5</sup> | 6.00×10 <sup>-5</sup> |  |  |  |
|                                                      | 35       | $2.32 \times 10^{-4}$                | 2.20×10-+             | 2.34×10 <sup>-4</sup> |  |  |  |
|                                                      | 45       | 7.26×10 <sup>-4</sup>                | 7.31×10 <sup>-4</sup> | 7.23×10 <sup>-4</sup> |  |  |  |
|                                                      | 55       | 1.86×10 <sup>-3</sup>                | 2.05×10 <sup>-3</sup> | 1.90×10 <sup>-3</sup> |  |  |  |
|                                                      | 65       | 5.70×10 <sup>-3</sup>                | 5.63×10 <sup>-3</sup> | 5.70×10 <sup>-3</sup> |  |  |  |
| Cp <sup>•</sup> (C <sub>5</sub> H <sub>7</sub> )CrCO | 25       | 4.66×10 <sup>-6</sup>                | $4.72 \times 10^{-6}$ | 4.60×10 <sup>-6</sup> |  |  |  |
| •                                                    | 35       | 1.59×10 <sup>-5</sup>                | 1.62×10 <sup>-5</sup> | 1.64×10 <sup>-4</sup> |  |  |  |
|                                                      | 45       | 5.72×10 <sup>-3</sup>                | 5.73×10 <sup>-5</sup> | 5.67×10 <sup>-5</sup> |  |  |  |
|                                                      | 55       | 1.49×10 <sup>-4</sup>                | 1.58×10 <sup>-4</sup> | 1.50×10 <sup>-4</sup> |  |  |  |
|                                                      | 65       | 4.43×10 <sup>-4</sup>                | 4.45×10 <sup>-4</sup> | 4.39×10 <sup>-4</sup> |  |  |  |

 $[Cp(PdI)CrCO] = 5 \times 10^{-4} M.$ 

bond. While for the  $Cp^*(C_5H_7)CrCO$  compound, a retardation of rate for CO substitution reactions may be attributed to the electronic influences of five methyl substitutients on cyclopentadienyl ligand.

To get further insight into the role of pentadiene in the mechanism of CO substitution reaction, the activated parameters ( $\Delta H^*$ ,  $\Delta S^*$ ) of Cp(PdI)CrCo (Cp=Cp and Cp<sup>\*</sup>) were compared to those of Vanadium and Titanium analogues in Table 2. The values of  $\Delta H^*$  for the Cp\*(PdI)CrCO complexs are similar to those of Vanadium and Titanium analogue which unergo by dissociative pathway, but different from those of Zr and Hf compounds<sup>19</sup> which undergo by associative pathway (A mechanism).

Kinetic data for CO substitution reactions of the chromium compounds could be the evidence of the classic dissociative pathway. An unusually low value of  $\Delta S^{\star}$  indicates that CO substitution between Cp(PdI)CrCO and PR<sub>3</sub> is not simple dissociative mechanism (B mechanism) and is dissociative mechanism involving the conformation change:  $\eta^5 S \leftrightarrow \eta^5$ -U interconversion (C mechanism) accompanied by an increase in order and symmetry and a decrease in entropy.

## **Molecular Orbital Calculations**

Here we describe the electronic structure and bonding of  $Cp^*(C_sH_7)CrCO$ , focusing mainly on the orientation and the role of pentadiene and  $Cp^*$  based on the extended Hückel MO calculations.

All the bond lengths and the bond angles are listed in Table 2 from the crystallographic data of Cp\*(C<sub>5</sub>H<sub>7</sub>)CrCO.<sup>5</sup> For both the  $\eta^5$ -U conformation and  $\eta^5$ -S conformation isomers, the coordination geometry of the pentadiene was optimised by using the three variables *l*, *L* and  $\varphi$  as defined is Scheme 3. *l* is the distance between the atom C<sub>1</sub> of C<sub>5</sub>H<sub>7</sub> and "m" on the line of C(1)-C(5). *L* is the distance between

 Table 4. Coordination Geometry of Cr-Pentadienes Complexes

|                       |     | S-conformation   | U-conformation  |
|-----------------------|-----|------------------|-----------------|
| Cr-CCP <sup>*</sup>   | Å   | 1.838 Å          | 1.838 Å         |
| Cr-M1*                | Å   | 1.444 Å          | 1. <b>444</b> Å |
| C(1)-(2)              | Å   | 1.390 Å          | 1.390 Å         |
| C(2)-(3)              | Å   | 1.412 Å          | 1.425 Å         |
| C(3)-(4)              | Å   | 1.437 Å          | 1. <b>425</b> Å |
| C(4)-(5)              | Å   | 1.390 Å          | 1.390 Å         |
| Cr-C(CO)              | Å   | 1.850 Å          | 1.850 Å         |
| Cr-CO                 | Å   | 1.160 Å          | 1.160 Å         |
| $\angle C_1 C_3 C_3$  | deg | 119.55°          | 122.7°          |
| $\angle  C_2 C_3 C_4$ | deg | 116.85°          | 125.3°          |
| $\angle C_3C_3C_5$    | deg | 113. <b>85</b> ° | 122.7°          |
| Φí                    | deg | 156.7°           | 156.7°          |
| Ф2                    | deg | 95.6°            | 95.6°           |
| <b>ф</b> 3            | deg | 107.7°           | 107.7°          |
| $\delta^{\prime}$     | deg | 23.3°            | 24.5°           |
| ε <sup>ε</sup>        | deg | 56.6°            | 0.0°            |

"CCP: centroid of Cyclopentadienyl ligand.

\*M1; midpoint of C(1) and C(5)

<sup>d</sup> $\delta$ ; dihedral angle between Cp ring and the Pdl plane ( $\phi_{1-3}$ ; angle formed by the bonds between CCP, M1 and CO ( $\epsilon$ ; dihedral angle between C<sub>3</sub>-C<sub>5</sub> plane and C<sub>1</sub>-C<sub>4</sub> plane.



the point "M", and the "m" on the line of C(1)-C(5) and the angle  $\varphi$  defines the swing of inner carbons away from Cr.

The other key geometrical parameters that are fixed include the following: Cp(centroid)-Cr=1.838 Å; Cr-C(CO)= 1.85= Å; Cr-M=1.444 Å; Cp(centroid)-Cr-C(CO)=95.6 Å.

The potential energy calculations on Cp\*(C<sub>5</sub>H<sub>7</sub>)CrCO as a function of the above three variables gave a minium at l=1.935 Å, L=0.281 Å and  $\phi=17.0^{\circ}$  for  $\eta^{5}$ -S coordination and a minimum at l= the middle of C(1)-C(5), L=0.650 Å and  $\phi=22.3^{\circ}$  for  $\eta^{5}$ -U coordination isomer. We should mention that the theoretically optimized geometry of Cp\*(C<sub>5</sub>H<sub>7</sub>) CrCO (S-conformation) is very close to the observed one. The optimized geometry is given in Table 4.

The total energy curves show that stability of the limiting pentadiene orientations is well balanced, where the calculated energy difference is only 3.57 kcal/mol, very slightly in favor of  $\eta^5$ -S coordination. Therefore, the S-orientation of the pentadiene is electronically accessible for 18-electron Cp\* (C<sub>5</sub>H<sub>7</sub>)CrCO and the geometrical choice would be determined by small steric and eletronic perturbation. Indeed the X-ray





**Figure 1.** The profile for S-(L=0.281 Å) and U-(L=0.650 Å) conformations of Cp\*(C<sub>5</sub>H<sub>7</sub>)CrCO as a function of L.



**Figure 2.** Interaction diagram for the S-and U-conformations in  $Cp^{\bullet}(C_{5}H_{2})CrCO$ .

structures of Cp\*(C<sub>5</sub>H<sub>2</sub>)CrCO exhibit the  $\eta^5$ -S-pentadiene orientation. The orbital interaction diagram for Cp\*(S-C<sub>5</sub>H<sub>2</sub>) CrCO and Cp\*(U-C<sub>5</sub>H<sub>2</sub>)CrCO is shown in Figure 2. The bonding between Cr and C<sub>5</sub>H<sub>7</sub> is achieved primarily through the donation-type  $\pi_2$ -2a", the back-donation-type  $\pi_4$ \*-1a" and mixed type  $\pi_3$ -2a' and  $\pi_1$ -1a' interactions. The 1a" and 2a' orbitals are essentially  $d_{xy}$  and  $d_{yz}$  orbitals of Cr respectively,

| Table  | 5.   | The               | Results                | of  | Populat | ion | Analysis              | between | Çr | and |
|--------|------|-------------------|------------------------|-----|---------|-----|-----------------------|---------|----|-----|
| Pentad | ieny | yl C <sub>E</sub> | •*(S-C <sub>6</sub> H; | )Cı | rCO and | С   | p*(U-C₅H <sub>7</sub> | )CrCO   |    |     |

|                               | S-conformation | U-conformation |
|-------------------------------|----------------|----------------|
| P(Cr-C <sup>1</sup> )         | 0.155          | 0.165          |
| P(Cr-C <sup>2</sup> )         | 0.121          | 0.120          |
| $P(Cr-C^3)$                   | 0.178          | 0.127          |
| P(Cr-C <sup>4</sup> )         | 0.087          | 0.121          |
| <b>P</b> (Cr-C <sup>5</sup> ) | 0.101          | 0.165          |
| $\Delta P$                    | -0.129         | -0.038         |
| $P(Cr-C_{ali})$               | 0.652          | 0.693          |
| P(II <sub>1</sub> -1a')       | 0.000          | 0.000          |
| P(II <sub>2</sub> -2a")       | 0.131          | 0.200          |
| P(II <sub>3</sub> -2a')       | 0.264          | 0.190          |
| P(II4*-1a")                   | 0.072          | 0.189          |
| Q(C <sup>1</sup> )            | -0.237         | -0.249         |
| $Q(C^2)$                      | -0.013         | +0.001         |
| Q(C <sup>3</sup> )            | -0.195         | -0.138         |
| Q(C4)                         | +0.020         | +0.001         |
| Q(C <sup>5</sup> )            | - 0.004        | -0.247         |

| P: Overlap      | population,       | Q:  | Charg | ge of  | carbons, | $\Delta P$ :         | P(Cr-C | (terminal)) |
|-----------------|-------------------|-----|-------|--------|----------|----------------------|--------|-------------|
| P(Cr-C(inner)), | $P(Cr-C_{oll})$ : | the | sum   | of all | the Cr-0 | C <sub>lodi)</sub> o | verlap | popula-     |
| tions.          |                   |     |       |        |          |                      |        |             |

while the 2a' orbital consists of  $d_{x^2-y^2}$  of Cr with an admixture of  $d_{t^2}$ . It is obvious from Figure 2 that both bonding pictures between U-conformation and S-conformation compound seem to be alike each other and that the amount of stabilization of the resulting bonding MO for  $\eta^5$ -S-conformation is also very similar to that for the  $\eta^5$ -U conformation structure.

In order to gain an insight into the Cr-(C<sub>5</sub>H<sub>7</sub>) bonding and CO-substitution reaction of 18-electron  $Cp^*(C_5H_7)CrCO_1$ a population analysis is performed. The results are summarized in Table 5, which includes overlap populations arising from  $\pi_2$ -2a",  $\pi_4$ -la",  $\pi_3$ -2a' and  $\pi_1$ -1a' interactions and Cr-C(1 and 5)(terminal) and Cr-C(2,3 and 4)(inner) bond overlap populations together which charges on pentadiene carbon atoms. Note that the major contributions to the total Cr-C(C<sub>5</sub> H<sub>7</sub>) overlap population which may be represented by P(Cr- $C_{all}$  come from the above-mentioned donation and back-donation and mixed orbital interactions. It so happened that the  $\pi_1$ -la' overlap populations for the two isomers are much alike and seem to be very slightly antibonding. And as for the donation interaction  $P(\pi_2-2a')$  is 0.131 (S-conformation) and 0.200 (U-conformation), and as for the back-donation interactions,  $P(\pi_4 \cdot la'')$  is 0.072 (S-conformation) and 0.189 (Uconformation). But in mixed-orbital interaction,  $P(\pi_3-2a')$  is 0.264 (S-conformation) and 0.190 (U-conformation).

In S-configuration of half-open chromocenes, the back donation interactions is smaller than other interactions. The greater back donation interaction may help stabilize a 20-electron transition state or intermediate. Thus, the small back donation interaction seems to make the chromium center less susceptible to nucleophilic attack.

This small difference of overlap population between S-and U-configuration should not be put too much meaning, but this small difference actually parallels the trend of  $P(Cr-C_{all})$ . But the Cr-(U-C<sub>5</sub>H<sub>7</sub>) bond may be in fact slightly stronger

Table 6. Overlap Population between Cr and the Carbon of CO for n<sup>5</sup>-S-Half-Open Chromocene Carbonyls

| Complexes                                   | P(Cr-CO) |  |  |  |
|---------------------------------------------|----------|--|--|--|
| Cp(CsH7)CrCO                                | 0.852    |  |  |  |
| Cp(2,4-C <sub>7</sub> H <sub>11</sub> )CrCO | 0.843    |  |  |  |
| Cp*(C <sub>5</sub> H <sub>7</sub> )CrCO     | 0.861    |  |  |  |



Reaction Coordinate

Figure 3. Proposed reaction profile for CO substitution reactions of Cp\*(C<sub>5</sub>H<sub>7</sub>)CrCO.

than the Cr(S-C<sub>5</sub>H<sub>7</sub>), and the total one-electron energies may underestimate the relative stability of the S-conformation isomer.

Another interesting aspect of the  $Cr-(C_5H_7)$  bond is to see how large or small the contribution of the  $\sigma$ -bonding for 1,5-carbons of  $C_5H_7$  is. The difference of overlap population between Cr-terminal (1.5-) carbon and Cr-inner (2.3.4-) carbon of 2,4-C<sub>7</sub>H<sub>11</sub>.  $\Delta P$  (= P(Cr-C<sub>terminal</sub>)-P(Cr-C<sub>inner</sub>)) are = 0.099 for the S-conformation compound and 0.230 for the U-conformation compound, respectively. The population structure of Cp\*(S-C<sub>5</sub>H<sub>7</sub>)CrCO is different form that of Cp\*(U-C<sub>5</sub>H<sub>7</sub>)CrCO. Here the large  $\Delta P$  means a greater contribution of 1,5- $\sigma$ bonding to the pentadiene coordination. The theoretically optimized structure is very close to the observed one by crystallography. In U-conformation, the population analysis shows that the terminal pentadiene carbons interact with Cr much more strongly than the inner carbons. But in the case of S-conformation, the Cr-terminal pentadiene carbons interaction is very similar to the Cr-inner carbons interaction. Therefore it is expected that Cr-(S-C<sub>5</sub>H<sub>7</sub>) bond is better described as  $\eta^5$ - $\pi$ -bonding, but the Cr-(U-C<sub>5</sub>H<sub>7</sub>) bond is better descrived as  $\sigma,\pi$ -bonding. The P(Cr-C<sub>all</sub>),  $\Delta P$  and the negative charges accumulated on the pentadiene carbons may be reflected in the reactivity of pentadiene. In order to get further insight into the relation between rate constants,  $k_{obst}$ and overlap population P(Cr-CO) for  $\eta^5$ -S-conformation, the overlap population between Cr and the carbon of CO, P(Cr-CO) is listed in Table 6. Arranging the n<sup>5</sup>-S-half-open chromocene carbonyls according to P(Cr-CO) gives the following ordering:  $Cp(2,4-C_7H_U)CrCO < Cp(C_5H_7)CrCO < Cp^{\bullet}(C_5H_7)CrCO$ . If the  $\eta^5$ -S-half-open chromocene carbonyls are ordered according to reaction rate constants for Scheme 1 at various concentrations of PR<sub>3</sub> and temperatures, the opposite arrangements as for the overlap population of Cr and the carbon of CO is obtained: Cp\*(C5H7)CrCO<Cp(C5H7)CrCO<Cp(2,4- $C_7H_{11}$ )CrCO. The opposite arrangements of these two orderings supports the supposition that substitution on the pentadienyl ligand may cause steric acceleration of the rate of dissociation, while substitutions on the cyclopentadienyl ligand appear to exert electronic influences that result in a retardation in rate.

A proposed reaction profile for Cp\*(S-C<sub>5</sub>H<sub>7</sub>)CrCO is shown in Figure 3. This proposed reaction profile determined for CO substitution reaction mechanism of Cp\*(S-C<sub>5</sub>H<sub>2</sub>)CrCO is allowed by the quantitative changes of the reaction coordination. The energy of  $[Cp(U-C_5H_7Cr]^*$  transition state is about 4.93 kcal/mole lower than that of [Cp\*(S-C<sub>5</sub>H<sub>7</sub>)Cr]\* transition state, and no significant energy barrier is found in the n<sup>5</sup>- $S \leftrightarrow \eta^5$ -U interconversions. The  $[Cp^*(U-C_5H_7)Cr]^*$  mechanism will be favored over [Cp\*(S-C<sub>5</sub>H<sub>7</sub>)Cr]\* mechanism, and this result is agreed with the experimental result. Therefore, it is suggested that the 18-electron Cp\*(C5H7)CrCO undergoes CO substitution by a predominantly dissociative mechanism, involving the following conformation change:  $\eta^{5}$ -S $\leftrightarrow \eta^{5}$ -U interconversions.

Acknowledgement. This research was financially supported by the Basic Science Research Institute Program of the Ministry of Education, Republic of Korea.

## References

- 1. R. D. Ernst, Chem. Rev., 88, 1255 (1988).
- 2. P. Powell, in Advances in Organometallic Chemistry; West, R. Stone, F. G. A. Eds., Academic, New York, 1986, Vol. 26, p. 125.
- 3. H. Yasuda and A. Nakamura, J. Organomet. Chem., 285, 15 (1985).
- 4. J. R. Bleeke, R. J. Wittenbrink, T. W. Clavton, and M. Y. Chiang, J. Am. Chem. Soc., 112, 6539 (1990).
- 5. M. C. Böhm, M. Eckert-Maksic, R. D. Ernst, D. R. Wilson, and R. Gleiter, J. Am. Chem. Soc., 104, 2699 (1982).
- 6. M. S. Kralik, J. P. Hutchinson, and R. D. Ernst, J. Am. Chem. Soc., 107, 8296 (1985).
- 7. M. S. Kralik, A. L. Rheingold, and R. D. Ernst, Organometallics, 6, 2612 (1987).
- 8. S. J. Severson, J. H. Cymbaluk, R. D. Ernst, J. M. Higashi, and R. W. Parry, Inorg. Chem., 22, 3833 (1983).
- 9. J. R. Bleeke and W. J. Peng, Organometallics, 6, 1576 (1987).
- 10. G. T. Palmer, F. Basolo, L. B. Kool, and M. D. Rausch, J. Am. Chem. Soc., 108, 4417 (1986).
- 11. Jeffrey W. Freeman, Noelc. Mallinan, Atta M. Arif, Robert W. Gedridge, Richard D. Ernst, and Fred Basolo, J. Am. Chem. Soc., 113, 6509 (1991).
- 12. R. Hoffmann, J. Chem. Phys., 39, 1397 (1963).
- 13. J. H. Ammeter, H. B. Bürg, J. C. Thibeault, and R. Hoffmann, J. Am. Chem. Soc., 100, 3686 (1978).

554 Bull. Korean Chem. Soc., Vol. 14, No. 5, 1993

- R. H. Summerville and R. Hoffmann J. Am. Chem. Soc., 98, 7240 (1976).
- L. Stahl, J. P. Hutchinson, and D. R. Wilson, J. Am. Chem. Soc., 107, 5016 (1985).
- R. M. Kowaleski, F. Basolo, R. W. Gedridge, W. C. Trogler, T. D. Newbound, and R. D. Ernst, *J. Am. Chem. Soc.*, 109, 4860 (1987).
- J. J. Chung and B. G. Roh, Bull. Kor. Chem. Soc. 14, 207 (1993).
- J. J. Chung and B. G. Roh, Bull. Kor. Chem. Soc. in publish.
- R. D. Adam, D. E. Collins, and F. A. Cotton, J. Am. Chem. Soc., 96, 749 (1974).

## 12-Hydroxyamoorastatone, a New Limonoid from Melia azedarach var. Japonica

Jong-Woong Ahn\*, Geon-Seek Yoo, Zaesung No, and Seung-Ho Lee

Natural Products Laboratory, Korea Research Institute of Chemical Technology, P.O. Box 9, Taejon 305-606 Received January 15, 1993

A chemical investigation of the stem bark of *Melia azedarach* var. *Japonica* (Meliaceae) has led to a new limonoid, 12-hydroxyamoorastatone (1), whose structure has been elucidated by spectroscopic measurements including 2D-NMR. The 2D-NOESY experiment on its di-p-bromobenzoate derivative (1a) has established the relative configuration of 1.

## Introduction

Melia azedarach var. Japonica (Meliaceae) is a large tree found commonly in southern Korea and Japan. The bark decoction of this plant has been used for intestinal worms and skin ailments in Korea.<sup>1</sup> As the result of an extensive study<sup>23</sup> of plants of this family, a large number of bitter principles have been isolated and classified as limonoids. As part of our continuing search for novel antitumor agents of medicinal plant origin, Melia azedarach var. Japonica was found to exhibit significant cytotoxicities against human tumor cell lines. Bioassay-directed chromatographic fractionation led to the isolation of a new cytotoxic limonoid, 12-hydroxyamoorastatone (1). This paper describes the isolation and structural elucidation of the new compound.

## **Results and Discussion**

The MeOH extract of the stem bark of *M. azedarach* var. *Japonica* was fractionated by a combination of column chromatography on silica gel and LiChroprep RP-18 and finally purified by recycling preparative HPLC to give compound 1 (Figure 1).

Compound 1,  $C_{28}H_{36}O_{10}$ , IR  $v_{max}^{Rg}$  cm<sup>-1</sup>: 3600-3200 (-OH), 1720br (C=O), 1242, 1057 (-OAc), 875 (furan) has resonances in its <sup>1</sup>H-NMR spectrum for three tertiary methyls ( $\delta$  0.82, 0.93 and 1.15), one acetyl ( $\delta$  2.04) and the characteristic  $\beta$ substituted furan ( $\delta$  6.35, 7.30 and 7.40). These assignments were supported by its <sup>13</sup>C-NMR spectrum (Table 1), which in addition showed two ketonic carbon signals ( $\delta$  213.8 and 220.6), six oxygenated carbons ( $\delta$  65.0, 70.1, 71.4, 74.9, 78.9 and 97.3) and four quaternary carbons ( $\delta$  41.0, 42.7, 43.7 and 47.4). The 2D <sup>1</sup>H-<sup>1</sup>H and <sup>13</sup>C-<sup>1</sup>H COSY spectra of 1 were extensively examined to clarify the connectivity of each proton in 1, and showed the presence of the partial structures A-



**Figure 1.** Recycling preparative HPLC of the compound 1. Column: JAIGEL-GS 320 ( $20 \times 500$  mm), Mobile phase: MeOH, flow rate: 5m//min.

C. Furthermore the methine proton at  $\delta$  4.88 (H-24) showed long-range coupling to the non-equivalent methylene proton at  $\delta$  4.11 (H-19). This result led to the partial structure D. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum also showed W-coupling between C-26 methyl proton ( $\delta$  1.15) and each of two methine protons at  $\delta$  3.71 (H-9) and 3.42 (H-14). The gross structure of 1 was determined by analysis of the long-range <sup>13</sup>C-<sup>1</sup>H COSY (Figure 2) and by reference to the data of related limonoids, amoorastatone and 12-hydroxyamoorastatin.<sup>4</sup> The hydroxy group at C-1 and the acetoxy group at C-3 were axial judging from the doublet signals with J=3.7 Hz of H-1 and with J=4.1 Hz of H-3, respectively. The double doublet signal (J=14.9 and 1.8 Hz) assignable to H-5 established that the H-5 was directed anti *trans* to the H-6 $\beta$ .