Thermodynamics of the Micellization of Cetylpyridinium Bromide in Some Aqueous Alcohol Solutions

몇 가지 알코올-수용액에서 Cetylpyridinium Bromide의 미셀화의 열역학적 성질

  • Chung Jong-Jae (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Lee Sang-Wook (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Choi Joon-Ho (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • 정종재 (경북대학교 자연과학대학 화학과) ;
  • 이상욱 (경북대학교 자연과학대학 화학과) ;
  • 최준호 (경북대학교 자연과학대학 화학과)
  • Published : 1993.01.20

Abstract

The effects of added alcohols on the critical micelle concentration(CMC) of cetylpyridinium bromide(CPB) were investigated by the UV-Vis spectrophotometer at the temperature range of 8∼45$^{\circ}C$. The CMC of CPB was increased with the addition of methanol in the whole temperature region studied, while decreased with the addition of ethanol and propanol. The increase of CMC with the addition of methanol may be attributable to the increasing solvent power of the methanol-water mixture, because methanol was scarcely solubilized into the palisade layer of the micelle of CPB. The decrease of CMC with the inclusion of ethanol and propanol may be derived from the solubilization of alcohols into the micelles. On the other hand, the CMC was decreased with the temperature rise in the low-temperature region below about 25$^{\circ}C$, and the CMC was increased in the high-temperature region above that. The thermodynamic parameters (${\Delta}G_M^{\circ},\;{\Delta}H_M^{\circ},\;and\;{\Delta}S_M^{\circ}$) of the micellization of CPB were obtained in some aqueous alcohol solutions. In the whole temperature region (8∼45$^{\circ}C$), the values of ${\Delta}G_M^{\circ}$ were negative, while those of ${\Delta}S_M^{\circ}$ were positive. And in the temperature region below about 25$^{\circ}C$ the ${\Delta}H_M^{\circ}$ values were positive, while in the temperature region above that the values were negative.

몇 가지 알코올-수용액에서 cetylpyridinium bromide(CPB)의 임계미셀농도(critical micelle concentration : CMC)변화를 8∼45$^{\circ}C$의 온도범위에서 UV-Vi. 분광광도법으로 측정하였다. CPB용액에 메탄올을 첨가시켰을 경우에는 메탄올이 미셀의 PALISADE 층으로 거의 가용화되지 않고 물과의 혼합용매 능력을 강화하여 CPB의 CMC를 증가시켰으며, 에탄올과 프로판올을 첨가시켰을 경우에는 미셀내로의 가용화 현상에 의하여 CMC가 감소하는 경향을 나타내었다. 그리고 알코올-수용액에서 약 25$^{\circ}C$이하의 낮은 온도범위에서는 온도가 증가함에 따라 CPB의 CMC가 감소하였으며, 약 25$^{\circ}C$의 온도 이상에서는 온도가 증가함에 따라 CMC가 다시 증가하는 경향을 나타내었다. 한편, 계면활성제의 미셀화에 따른 열역학적 파라미들 중에 미셀화표준자유에너지((${\Delta}G_M{^{\circ}}$)는 전온도 범위에서 음의 부호를 나타내었고, 미셀화표준엔트로피(${\Delta}S_M{^{\circ}}$)는 양의 부호를 나타내었으며, 미셀화표준엔탈피(${\Delta}H_M{^{\circ}}$)는 대략 25$^{\circ}C$를 전후하여 양의 값에서 음의 값으로 변하였다.

Keywords

References

  1. J. Colloid Interface Sci. v.127 R. J. McGreeve;R. S. Schechter
  2. Bull. Chem. Soc. Jpn. v.58 M. Nakaguki;S. Yokoyama
  3. Bull. Chem. Soc. Jpn. v.51 M. Manabe;M. Koda
  4. Bull. Chem. Soc. Jpn. v.47 N. Nishikido;Y. Moroi;H. Uehara;R. Matuura
  5. J. Colloid Interface Sci. v.101 H. Hoiland;E. Ljosland;S. Backlund
  6. Bull. Chem. Soc. Jpn. v.51 H. N. Singh;S. Swarup
  7. J. Colloid Interface Sci. v.124 A. M. Blokhus;H.Hoiland;E. Gilje;S. Backlund
  8. J. Colloid Interface Sci. v.63 K. Hayase;S. Hayano
  9. J. Colloid Interface Sci. v.107 H. Hoiland;A. M. Blokhus;O. J. Kvammen;S. Backlund
  10. J. Colloid Interface Sci. v.114 A. M. Blokhus;H. Hoiland;S. Backlund
  11. J. Colloid Interface Sci. v.93 R. Zana;C. Picot;R. Duplessix
  12. J. Colloid Interface Sci. v.77 M. Manabe;M. Koda;K. Shirahama
  13. Solution Chemistry of Surfactants v.1 P. Mukerjee;K. L. Mittal(ed.)
  14. J. Am. Chem. Soc. v.95 C. J. O'conner;E. J. Fendler;J. H. Fendler
  15. J. Am. Chem. Soc. v.90 T. C. Bruice;J. Katzhendler;L. R. Feder
  16. J. Am. Chem. Soc. v.98 D. Piszkiewics
  17. Tetrahedron v.31 K. Martinek;A. P. Osipov;I. V. Berezin
  18. J. Chem. Soc., Faraday Trans. 1 v.81 M. D. Vijlder
  19. Micellization, Solubilization and Microemulsions v.1;2 K. L. Mittal(ed.)
  20. J. Colloid Interface Sci. v.80 R. Zana;S. Yiv;C. Strazielle;P. Lianos
  21. Bull. Chem. Soc. Jpn. v.26 K. Shinoda
  22. Cationic Surfactants E. Jungermann
  23. J. Kor. Chem. Soc. v.36 J. J. Chung;S. W. Lee;B. G. Roh;J. H. Choi
  24. Trans, Faraday Soc. v.60 J. Clifford;B. A. Pethica
  25. J. Colloid Interface Sci. v.44 M. Tanaka;S. Kaneshina;T. Tomida;K. Noda;K. Aoki