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Finite Element Solution of Helmholtz Equation for
Free Harbor Oscillation
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Abstract

For the numerical analysis of free oscillation characteristics in a harbor with general boundary
and bottom topography, finite element method is applied. The governing Helmholtz equation is
transformed into a generalized matrix eigenvalue problem using the standard finite element proce-
dure. A computer code is developed for the numerical evaluation of natural frequencies and free
oscillation modes.

In the eigensolution process, a shifting strategy is devised for the treatment of numerical singula-
rity. Scaling of coefficient matrix is also found to be effective for the alleviation of numerical ill-
conditioning.

For the test problems, firstly, analytical and numerical solutions are compared and validity of
the code is obtained. Hence the method is successfully applicable for the real-world problems with
general geometric boundaries and bottom topography.

..................................................................................................................

Ut 71stetA ZAI A AFE kR gutelM ¢ nf T B FARME st
fFEgsgol S5k A 29l Helmholtz?$ 3 2& gzt slEl: I/ EAZ W@
sed BERT24AHEE ARSI

AFF79 DKAFRL=Y] FAHE AVIAT HFH ZEaPo] ARHJL, /KA A
Aol FxH EolA& I3 s LA ol T Yol nAHAeH, £ etz & SE7
AAME FHd4e FH3 ARAHYLS itk

FA2A WA HHHE ¢ 7 Ae A4S AAst FANG AR E v Foan g
AFE Z2aPe FE84E AT, YUAH AA 23% A9 w49 dA el FEas
#HPE HAe3td AFFHor A/AEFY AE TIAT

..................................................................................................................

1. INTRODUCTION
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ment/design and the maintenance/operation of a
harbor. It is closely related to the resonance and
the forced oscillation under invading waves. The
maximum wave amplitude or a resonance pheno-
menon within a harbor is greatly affected by natu-
ral periods and the solution of harbor oscillation
may be represented as a linear combination of
free oscillation modes. The long waves such as
tides, storm surges and tsunamis can cause the
harbor resonance if their periods are in coinci-
dence with one of the free oscillation periods.™
For the analysis of free harbor oscillation, field
observations or hydraulic and numerical model
experiments have been used.® But the field
observation and hydraulic model experiments
cannot be pursued or are very expensive in case
of newly-designed harbors. Therefore, analytical
or numerical methods must be developed and
some of them are shown to be applicable.’ Mo-
reover, recent advances in computer technology
and development of numerical algorithms have
made possible to apply the numerical methods
and to treat various computational difficulties.
Some numerical methods ever effectively used
may give unreasonable solutions due to the sim-
plification of governing equations and the approxi-
mation of boundary conditions. Nevertheless, solu-
tions of appropriate numerical methods are still
better than those of simplified analytical ones.
Such a case happens particularly in the problem
with complex boundaries and bottom topography.
Among the various numerical methods, finite
difference method and finite element method have
been widely used for such a class of problems.
But the finite difference approximation of govern-
ing equation has some difficulties when the geo-
metric complexity of boundaries and bottom topo-
graphy is involved.® In this regard, the finite ele-
ment approach is shown to be robust. Ralston and
Wilf® applied the finite element method in the
free oscillation analysis of geometrically simple
harbor, i.e., square basin with constant depth. Ho-
wever, other fields of finite element application
related to the general characteristic analysis may
be found. For example, Zienkiewicz® has perfor-
med eigenanalysis for arbitrary geometry in elas-

ticity field. Mey™ also presented an integral equa-
tion method for the eigenvalue problem in two-
dimensional rectangular and circular electromag-
netic field. But still in recent years, the application
of finite element method on the free oscillation
analysis in a harbor with general boundary and
bottom topography conditions is in its infancy.

In this paper, an applicability of the finite ele-
ment technique for the free oscillation analysis
in a harbor with complex geometry and bottom
topography is resumed and a general-purpose
computer program is developed. To verify the
validity of the method and the program, numeri-
cal examples are presented ; rectangular boundary
with constant depth, rectangular boundary with
variable depth, and real-world problems of arbit-
rary boundary and bottom topography.

2. GOVERNING EQUATION

According to the shallow water wave theory,
the governing equation for the free harbor oscilla-
tion can be expressed as the Helmholtz equation
in a harbor domain D;
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where the boundary condition on the boundary
dD is given as;
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In Eqs.(1) and (2), ¢ is phase velocity, and n unit
outward normal vector at boundaries. The solu-
tions of Eq.(1) with Eq.(2) are composed of eigen-
values w* and corresponding eigenfunctions F(x,y)
having physical meaning of natural frequencies
squared, and the modes of the surface displace-
ment in a harbor, respectively.

Since Eq.(1) is valid only under the assumption
of constant water depth(h) through the domain,
the following relations are held;

c=v/gh (3)
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where g is the gravitational acceleration and T
the natural period.

In real harbors, h is no more constant. Thus
Eq.(1) cannot be directly used for the free oscilla-
tion analysis in a harbor with general boundary
and bottom topography. In this regard, an efficient
and practically applicable numerical scheme to
calculate free oscillation periods and modes in a
real harbor should be provided.

3. FINITE ELEMENT FORMULATION

Galerkin’s method, which is one of the weighted
residual methods, is used to derive the finite ele-
ment equation from Helmholtz equation (1). Here
the eigenfunction F(xy) is approximated through
the interpolation of nodal values R; as;

NN
F(x, v)= > Nix, VR, (5)
i=1

where NN is the number of nodal points in an
element, and Ni is properly chosen interpolation
functions. When the linear triangular finite ele-
ment is employed, then NN=3, which will be
used in numerical examples later.

Substituting Eq.(5) into Eq.(1) and using Galer-
kin’s procedure, one can derive the following ele-
ment equation;
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where the superscript ‘e’ denotes the ele-
ment-level quantities. In the derivation of element
equation, depth of an element is kept constant
for Eq.(6) or Eq.1) to be valid, which may be
the average of depths of nodal points. This is an
only approximation of finite element procedure
to solve the Helmholtz equation for the free har-
bor oscillation.

Integrating Eq.(6) by parts, we can obtain;
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In Eq.10), B® is an element boundary, ie.,
nodal points of an element, and the constant ¢®
is defined as;

c©=/gh® an

where h® is the average depth of element, which
may be approximated as;

h© = _1._ % hi(E) (12)
NN i=1

where h{”"s are the depths at the nodes of an
element ‘e’. As the element size decreases, the
model bottom topography idealized with Eq.(12)
approaches real situation.

Superposition of element equations, Eq.(7), with
boundary condition, Eq.(2), leads to a generalized
algebraic eigenvalue equations for the whole
domain and boundary.

K R~w* M R=0 (13
NE NE
where K=Y K¢ M) M®,
: “

e=]
and NE is total number of elements. The matrix
eigenproblem of Eq.(13) is solvable as matrices
K and M must be positive definite or semidefinite.

4. OBSERVATIONS ON FINITE ELEME-
NET EQUATIONS

Critical observation on the finite element equa-
tion, Eq.(13), can be noted before the numerical
solution procedure is established. They are rela-
ted with the magnitudes of matrix elements and
the inherent nature of matrices K and M of Eq.
13.

(1) Note that the orders of element magnitude
in K© and M® of Egs.(8) and (9) are respectively
Oh*®/A®y and O(A®), where A® is the area of
a finite element. Hence the difference of magni-
tude in K® and M“ may become prohibitively
significant in case of a large domain with relati-



vely shallow depth. As a matter of fact, it would
cause a numerical difficulty when the matrix
eigenproblem is numerically solved. Thus an ap-
propriate scaling of coefficient matrices in Eq.(13)
should be employed in the numerical computation.

(2) In the governing eigenproblem of Helmholtz
equation, Neumann type boundary condition of
Eq.(2) has been posed, which implies a zero eigen-
value of 2 or rigid body modes of eigenfunction
F. Such a phenomenon will be directly represen-
ted in the matrix eigenproblem of Eq.(13) and
resulting matrices K and M become at most posi-
tive semidefinite or singular. Thus, in the numeri-
cal implementation of solution procedure, such a
singularity problem should be specially handled.

5. SOLUTION SCHEMES OF FINITE ELE-
MENT EQUATIONS

A variety of numerical methods for the solution
of generalized algebraic eigenvalue problems is
available.®® Among them the subspace iteration
method is suitable for the partial eigensolution
of large scale problems such as Eq.(13).

In the method, matrices K and M of Eq.(13)
are supposed to be positive definite and at least
positive semi-definite, respectively. However, the
matrix K in Eq.(13) does not satisfy the positive-
definite condition since it contains the rigid body
mode due to the Neumann type boundary condi-
tions of Eq.(2). Thus it is singular in nature. The
singularity of matrix K usually causes the numeri-
cal difficulties in the numerical eigensolution pro-
cedure and an appropriate technique must be em-
ployed. Furthermore, the numerical ill-conditio-
ning problem will happen in the numerical com-
putation when the elements of matrix K become
much smaller than those of matrix M. Such a si-
tuation arises when the ratio of depth to width
of harbor is significantly small, which is usually
the case.

To alleviate numerical ill-conditioning, scaling
of matrices is introduced in Eq.(13) as;

M*=10"°*M (14
p=10°w? (15)
K R=p M* R (16)

where s is a scaling factor. This way the orders
of magnitude in the elements of matrices K and
M* are made approximately the same. Hence the
numerical ill-conditioning can be avoided.

For the treatment of singularity, shifting stra-
tegy is effectively applied in Eq.(16) as;

K*=K+o¢ M* an
A=u+o (18)
K* R=A M* R (19)

where ¢ is a shifting parameter and A shifted
eigenvalues. Shifting parameter o must be so cho-
sen that K* is no longer singular matrix, and the
original eigenvalues can be recovered as;

0*=10"*A—0) (20)

Note that the eigenvectors are not affected with
shifting and scaling.

6. NUMERICAL EXAMPLES

Three types of numerical examples are presen-
ted herein for the purpose of testing the develo-
ped numerical method and examining the applica-
bility on real-world problems. For the former, a
problem of square boundary and uniform bottom
topography or constant water depth is taken, for
which analytical solutions are also available. They
are compared with finite element solutions. The
second example is posed as variable depth and
square boundary. The third one is a real harbor
with variable depth and general boundary. They
are used to examine the applicability and some
qualitative discussions on their solutions will be
possible.

For all the numerical examples presented, shif-
ting factor, 6=0.5, is used in the computation.
Scaling factor is set to zero(s=0.0) in Examples
1 and 2, while s=10.0 is used for Example 3.

6.1 Example 1: Square basin with constant
depth

It is a square basin of 160x160m with constant

depth of 4m. Analytical solutions for rectangular

basins with constant depth have been found as™!®
.

KR ENRRE



2 2
@t = —:;-+ %2—); k, m=0, 1, 2 (21)
F(x, y)=cos( %T-x)cos(%rly) (22)

where a and b are the sides of rectangular boun-
dary in x and y direction respectively. Since a=b
in the example, according to Eq.(21) and Eq.(22),
numerical solutions of pairs of the same eigenva-
lues with corresponding symmetric modes are ex-
pected. Moreovereigenfunctions F(x,y) or numeri-
cal eigenvectors R do not have to depend on the
depth h once it is constant.

Finite element system for numerical computa-
tion has 81 degrees of freedom and 128 linear
triangular elements as shown in Fig. 1. Therefore,
the size of matrices and consequently the number
of eigensolutions must be 81, the total number
of nodal points. Analytical and numerical finite
element solutions for the lowest few modes are
presented in Table 1 and Fig. 2 which shows the
contours of eigenvectors. Numerical solutions of

160 m »
10 19 173

1
_I20m

—_

[+ BN - ¥~ I ¥

81

(o) Finite Element Meshes
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(b) Bottom Topography of Example 1
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(c) Bottom Topography of Example 2

Fig. 1. Finite Element Meshes and Bottom Topog-
raphy of Example 1 and Example 2.

B34 H15%- 19934 3 A

Table 1. Free Oscillation Periods of Example 1 and

2
Example 1, sec. Example 2, sec.
Mode -
Analytical Numerical Numerical
(% Error)

0 = 12X10% 12X 108
1 50.60 50.28(0.63) 89.53
2 50.60 50.28(0.63) 8256
3 35.78 35.12(1.84) 59.33
4 25.30 24.68(2.45) 54.50
5 25.30 24.67(245) 45.27
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Fig. 2. Normalized Eigenvectors for Example 1.

natura] periods are shown to have reasonable
accuracy compared with the analytical ones(less
than 2.5 % error). Corresponding eigenvectors
associated with the same eigenvalues show the
similar shapes although the amplitudes of eigen-
vectors are symmetrically reversed, as can be
seen in Fig. 2. Thus the usability of the developed
finite element program is found.



6.2 Example 2: Square basin with variable
depth

It has the same boundary as Example 1 but
the uniform bottom slope of 0.025 as shown in
Fig. 1. Eigenvalues are presented in Table 1. Na-
tural periods of Example 2 are consistently larger
than those of Example 1 at the same mode, which
accounts for the effect of hottom topography. The
contours of eigenvectors are presented in Fig. 3.
As can be seen in the figure, the amplitudes of
eigenvectors at shallow region are relatively larger
than those in the deep region. This agrees with
Hidaka's result stating that the wave amplitudes
of the shallow waters are larger than those of
deep ones.™®? Thus, the validity of the program
is verified qualitatively as well as quantitatively.

6.3 Example 3: Real harbor with general
boundary and depth

For the verification of applicability of finite ele-

ment procedure, an example of real harbor is con-

sidered. Boundary and bottom topography of study

area is shown in Fig. 4. Harbor boundary is quite

general and water depths are in the range of 1.0~

Mode 5

Mode 4

Fig. 3. Normalized Eigenvectors for Example 2.

25.0m.

Construction of artificial island is planned in
the region as an initial stage of The New Marine
Town Project of Pusan, Korea. Since the free
oscillation characteristics of the region before and
after the construction of artificial island are of
interest, two cases are considered ; with and
without artificial island. Finite element idealiza-
tions for both cases(Case I without island ; Case
11 with island) are respectively shown in Fig. 5
and 6 where Case I has 237 nodes and 441 eleme-
nts and Case II 211 nodes and 311 elements.

Numerical results of oscillation periods are pre-
sented in Table 2 and the normalized eigenvec-

VAVAN
A\VAVAVAVA

Fig. 5. Finite Element Mesh of Example 3{Case |).
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Fig. 6. Finite Element Mesh of Example 3(Case Il).

Mode &

Mode 4

Fig. 7. Normalized Eigenvectors for Example 3
(Case 1).

tors, |Ri|<1.0, are in Figs. 7 and 8 respectively.
The periods of no island case become much shor-
ter than those of the case with island. Maximum
amplitudes of eigenvectors consistently appear at
shallow regions for both cases. Such a trend is
very reasonable representation of Hidaka's result.
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Fig. 8. Normalized Eigenvectors for Example 3
(Case ).

Table 2. Finite Element Solution of Example 3

Free Oscillation Periods, min.
Mode Case I: Case II:
Without Island With Island
1 22.86 36.75
2 19.77 35.21
3 13.72 2147
4 12.15 16.02
5 10.29 12.53

Thus an applicability of the method and program
is assured.

7. SUMMARY AND CONCLUSION

Finite element procedure for the analysis of
free harbor oscillation with a general boundary
and bottom topography is described. The gover-
ning Helmholtz equation is transformed into a
generalized algebraic eigenvalue problem. Shifting
strategy and scaling factor are introduced in the
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solution process to treat singularity and numerical
ill-conditioning of the problem.
For the verification of validity and applicability

of the method and finite element program, three -

numerical examples are solved. As for the validity
and accuracy, available analytical solutions are
compared with numerical solutions. They are in
excellent agreement. Qualitative trends of finite
element solution are also found to be reasonable,
which can be drawn based on the Hidaka’s result.

From the study and numerical results, it is con-
cluded that developed numerical schemes and
finite element solutions are very reasonable.
Hence the usability of finite element method for
the practical analysis of free harbor oscillation
with general boundary and bottom topography is
proved.
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