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Design Optimization of Blade Stiffened
Laminated Composite Plates
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Abstract

The buckling load of a blade stiffened laminated composite plate having midplane symmetry
is maximized for a given total weight. The thicknesses of the layers and the width and height
of the stiffener are taken as the design variables. Buckling analysis is carried out using a finite
element method. The optimization problem is solved using an IMSL subroutine. Due to the highly
nonlinear nature of the optimality equations, several local optimum solutions are found. Various
combinations of fiber orientation for the laminate layvers and the blade stiffener are investigated
to examine their relative efficiency. Out of several cases examined, the best design was produced
from the combination of (0°Beam/0%/90%s.
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1. INTRODUCTION for added weight. Previous works in the area of
design optimization of composite plates, have fo-

Composite materials are popularly used as the cused on flat plates without stiffeners. Recently,

structural material in these days because of their
high strength-to-weight and stiffness-to-weight ra-
tios. These properties are very important in many
of today’s
ng111 is requ1red but a severe pen.dlly is incurred

engineered structures where high stre-
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laminated plates stiffened by longitudinal mem-
bers became common structural components and
received more attentions for the design optimiza-

(14

tion The biggest advantage of the stiffeners
is the increased bending stiffness of the panel

with a minimum of additional materials, which
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makes these structures highly desirable for out-
of-plane loads or in-plane buckling loads. Howe-
ver, the complex geometry of the stiffened plates
makes it difficult to adopt the simplifying assump-
tions used for flat laminates which often lead to
closed form solutions.

The present study focuses on the optimal de-
sign of laminated composite blade-stiffened lami-
nate for the maximum buckling load. Specifically,
it deals with a symmetric blade stiffened compo-
site plate that has n number of laminae and a
stiffener on either side of the midplane. A sym-
metric composite plate is chosen so that the coup-
ling between extenseon and bending is eliminated.
This lack of coupling allows the use of linear buc-
kling analysis for the buckling load. The buckling
analysis is performed using a finite element me-
thod. The design objective in this study is to ma-
ximize the buckling load with a given total mate-
rial constraint. Design variables are set to the la-
minae thicknesses and the stiffener height and
the width. The fiber orientation of the laminae
and the stiffener are allowed to be either 0° or
90°. Four different stacking sequences of the fiber
orientation are investigated. For each case, design
optima are investigated. These optima are then
compared to determine the best stacking seque-
nce. The study is completed for two different ca-
ses of total material volume.

STIFFENED COMPOSITE PLATE

The plate considered in this study is square
and simply supported along all four edges as
shown in Figure 1. The plate has a symmetric
(top and bottom) blade stiffener at center and is
subjected to in-plane loads in the X-direction. Two
forms of plate buckling are considered: the plate
and stiffener, as one unit, can buckle in an overall
buckling mode; and the blade stiffener in itself
can undergo local buckling. The buckling analyses
of these two are performed separately. For the
case of overall plate buckling, the blade stiffener
is treated as a beam reinforcing the plate. A finite
element formulation is used, and the stiffness ma-
trix and the geometric stiffness matrix of the

Fig. 1. Stiffened plate under inplane load.

beam are calculated and combined with the cor-
responding matrices of the base plate. For the
case of local stiffener buckling, the blade stiffener
is treated as an independent plate subject to an
in-plane compressive load. Assuming that three
sides are simply supported and the fourth side
is free, we can obtain the local buckling load of
the stiffener analytically.

Overall Plate Buckling Analysis
As the stiffener is treated as a beam, the gover-
ning differential equation is

(E.L,W")" —P,W" =0 D

where W is the transverse deflection of the beam,
a prime () denotes differentiation with respect
to the longitudinal coordinate X, and Pb is the
beam axial load. Young's modulus of the beam
in longitudinal direction is denoted by Eb, and
the second moment of inertia of the beam is de-
noted by Ib and can be expressed as follows:

2 ; .
L= —,{‘Bf H+Ty)* T+ 2)

where B is the width, H is the height of the stiffe-
ner and TT is half the total thickness of the lami-
nate plate on which the stiffener is placed (see
Figure 1 and Figure 2). The factor of 2 in the
expression for Ib accounts for the two stiffeners,
one on top, and one on bottom of the plate. Each
of the geometric quantities and material proper-
ties can be normalized dividing by the span le-
ngth, L, or the layer stiffness of plate in fiber

EN- SRS 0 Ep e



direction, E11, as follows:
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Then, we get the differential equation (1) also in

nondimensional form:
(epiyW™)” — pyW” =0 4)

The finite element discretization of the above
beam equation leads to

(KU~ pI)[I((}:]b{U}b:O )

where [KJ, is the global beam stiffness matrix,
[K¢ls is the global beam geometric stiffness mat-
rix, and {U}, is the generalized global displace-
ment vector of the beam which has 2 degrees

of freedom {w, ":L} at esch node.

For the plate buckling analysis, a 16 degree-of-
freedom plate finite element® is used yvielding the
equation,

(KI{U}-n[K:{UF=0 (6)

where [K] is the global plate stiffness matrix,
[K.] is the global plate geometric stiffness matrix,
and {U} is the generalized global displacement
vector of the plate which has 4 degrees of free-
dom

w, —, = ;7 } at each node.

Since the terms w and %L:“of the vector {U},
in equation(5) are equivalent to the terms w and
5‘% in the vector {U} equation(6), these two
equations can be combined to get one matrix
equation for overall buckling of the plate and stif-

fener. The overall equation is

(K> (U} + (KU n[Ke T = p K Jo{UF =0
N

where [K] and [KJ, are the plate and the beam
stiffness matrix. respectively, [Kq] and [Ks]b are
the plate and beam geometric stiffness matrix, re-
spectively. The matrices [K], and [K]b are tran-
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sformed from the matrices (K1, and (K], to fit
into the generalized displacement vector of plate
{U}. The load carried by the beam is pb and the
load carried by the plate is nx. These loads are
proportional to the extensional stiffness of each.
So the total load P on the stiffened plate is dis-
tributed as pg; to the plate and pg; to the stiffe-
ner, where g; and g» are expressed as follows:

_ €pSp
&=
€8y T epSyy
_ &Sy
L= ®)

€,5,+ eu8p

where s, and s, are the nondimensional cross-
sectional area of plate and beam, and e, and e,
are the nondimensional elastic moduli of the lami-
nated plate and the beam. The expression for e,
are obtained from

. "
S . (9

where [a] is the nondimensional stretching stiff-
ness matrix expressed as (see Figure 2)

la)=2 3, lqla—7.) (10)
i ~ _ i Cienter line
Tn layer n Zn
7 ! 1
Zk+1
. 7,
N )
Tk layer k
“y — e ' Z,(=T;)

T1 layer 1

Fig. 2. Geometry of half of a 2n-layered symmetric
laminate
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In above equation, n is half the numper of total
layers in plate, q is the nondimensional reduced
stiffness of the laminate, and z, is the nondimen-
sional distance of each layer measured from the
center of the laminate. Equation (7) may be writ-
ten now as

(KHUH [K1{U} - p@ (K U gl K, 1, {UD =0
an

Now the overall buckling equation can be written
in the form,

(K1+{U} - plKs1r{U}=0 (12)

where [K]r is the total stiffness of the plate and
stiffener combination and [Kglr is the total geo-
metric stiffness of the plate and stiffener combi-
nation. This generalized eigenvalue problem is
solved using the DNLASO subroutine from the
package LASO2 [6], which computes a few eigen-
values and associated eigenvectors of a large (spa-
rse) symmetric matrix using a Lanczos algorithm

(71.

Stiffener Local Buckling Analysis

The local buckling of the stiffener is analyzed
separately from the overall plate analysis. The sti-
ffener is treated as a plate which is simply suppo-
rted at 3 edges(X=0, X=L, Z=0)and is free at
one edge(Z=H). It is subject to axial compressive
load Ps. Because two opposite sides are simply
supported, this problem can be solved analytically.
The governing partial differential equation for the
orthotropic plate buckling problem is given from
[8] as

v o'V o'V
+ +
Du 5+ 220+ 2De) 5 ogm D™
v
Pz =0

(13)

where V is the plate deflection, D) are the com-

ponents of the bending stiffness matrix, and Ps
refers to the stiffener local buckling load. By appl-
ying the boundary conditions and assuming a
Levy's solution of the form,

_68_.

V= S F@m sin 2=

m=135- L

(14)

the bucking load P, can be solved directly and
the nondimensional buckling load p. is obtained
from the relation

1

D= ‘E_ans- (15)

OPTIMIZATION PROBLEM

The optimization problem is to maximize the
buckling load of the blade stiffened plate for a
given total material volume (which is proportional
to the total weight). The design variables are set
to the nondimensional thickness of the individual
lamina, t;, and the nondimensional width and hei-
ght of the stiffener. Here the nondimensional wi-
dth, b, and the nondimensional height, h, of the
stiffener are denoted as t,+1 and t,+ 2, respecti-
vely. The nondimensional design variables, t;, are
subject to side constraints of

ti min S t\ »—<~t1 max fOr i:: 1'2’..., <n+2): (16)

where t; max and t; min are upper and lower bou-
nds on the design variables, respectively, and n
is half the number of layers for the symmetric
laminate.
The optimization problem for maximizing the
buckling load is written as
max B
B, ti
such that p; 2 B
0999p, 2 B
0998p; 2 B
ps 2 B a7

22 @)+ 2ty it 2 —0=0

and  timin St S b ge for i=12,, (n+2),

where p;, p» and p; are the first three overall
buckling loads of the stiffened plate which are
obtained from overall FEM analysis, p; is the local
buckling load of the stiffener obtained analytically,
and 0 is the nondimensional total plate volume.
The variable B is introduced to avoid having to
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maximize the minimum of py, ps, p3, and ps which
is not a smooth function. The coefficients of 0.999,
and 0.998 in the second and third constraints, are
necessary to keep the eigenvalues p, p,, and p;
distinct when the buckling mode is bimodal or
trimodal, and allow the calculation of derivatives
of these buckling loads.

The above optimization problem is solved using
one of the IMSL subroutine DNCONG that is
used for general nonlinear programming prob-
lems. The subroutine DNCONG is based on sub-
routine NLPQL which uses a successive quadratic
programming method with analytical gradients

(91
RESULTS AND DISCUSSION

The laminate plate chosen in this study is
square with span length L and has 4 symmetric
layers. The material selected for the laminate and
the stiffener is a high-stiffness graphite/epoxy
composite. The material properties of this compo-
site are: E;;=31.0X10° psi(213.7 GPa), Ex»=34X
10° psi (23.3 GPa), G;;=0.75X10° psi (5.17 GPa),
Vi:=0.28. Design optimization results are obtained
for two different total volume conditions(6=0.04
and 0.015) and four different stacking sequences:

(0°Beam/90°/0")s
(0“Beam/0°%/90%)s
(90°Beam/90%0")s
(90"Beam/0°/90")s

The minimum and the maximum thicknesses
of each laminae are set to 0.001L and 0.2L, res-
pectively. The same upper and lower limits are
used for the stiffener width and height. For each
configuration, the values of the design variables
at the optimum are given. Also listed are the ac-
tive buckling loads and corresponding buckling
modes. All the results are presented in nondime-
nsional form.

Case 1:
0=0.04 and Ply Orientation (0°Beam/90%0"s

For this configuration, two different optimum
solutions are found. They are listed in Table 1
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Table 1. Results of (0°Beam/900/0%s laminate

for 6=0.04
Active
t1 t; b h P Buckling
Loads

0.007320.01020| 0.03801 | 0.06369 (0.0002646{P,, P,, P, P,
0.015210.00100}0.05794 | 0.06526 (0.0002822 P,, P,, P,

Fig. 3. Geometry and buckling modes of Case 1
for p=0.0002646.

below. Figures 3 and 4 show the scaled dimen-
sions of the optimized plate and the overall plate
buckling modes corresponding to the active huck-
ling loads. Since all these modes have the same
buckling load, actual buckling may occur in any
linear combination of these multiple modes toge-
ther with the local stiffener buckling.

Of the two optimal designs found for Case 1,
the global optimum, which has higher buckling
loads, is the one that has 3 active bucking loads.
The design with 4 active buckling loads turns out
to have lower buckling load and becomes the local
optimum. Comparing these two designs, the global
optimum is seen to increase the size of the stiffe-
ner and to decrease the thickness of the ty,(0° la-
ver) to the lower limit. This causes a strong stiffe-



Fig. 4. Geometry and buckling modes of Case 2
for p=0.0002822.

ner and a weak plate so a much greater portion
of the load is carried by the stiffener.

Case 2:
8=0.04 and Ply Orientation (0°Beam/0°/90%s

For this configuration, only one optimum solu-
tion is found. It is listed in Table 2 below. The
same results are presented graphically in Figure
5. It turns out to be the best design of those tes-
ted. Note that here the plate buckles simultaneou-
sly in all four modes.

Case 3:
8=0.04 and Ply Orientation (90°Beam/90°/0%s

For this configuration, two different optimum
solutions are found. They are listed in Table 3
below. The same results are presented graphically
in Figures 6 and 7.

Of the two optima found, the global optimum
occurs when three buckling modes occur simulta-
neously. No optimum was located that gave simul-
taneous buckling with all four modes. For this
case, the stiffener fibers are in the 90° orientation
so the stiffener adds much less stiffness to the
plate than when the stiffener fibers are in the
0° orientation. Thus, most of the volume goes to
the t;(0° layer) and the t;(90° layer) stays at the
lower limit. Since there are only 3 desigh variab-
les inactive from the bound constraints, it is impo-
ssible to obtain simultaneous buckling with all
four modes. For the local optima case where p=0.

Table 2. Results of (0°Beam,/0°90%s laminate for

0=0.04
Active
t tz b h p Buckling
Loads
0.00103 | 0.0138510.06960 | 0.07350 |0.0003949|P;, Py, P5, P,

Table 3. Results of (90°Beam/90°%0%s laminate

for 6=0.04
Active
t tp b h P Buckling
Loads

0.00100 0.01900 }0.00100 | 0.00100 |0.0000677 P,
0.00100]0.01538 1 0.02354 | 0.15323 {0.0001804| Py, Py, Ps

Fig. 5. Geometry and buckling modes of Case 2.

0000677, the stiffened plate is trying to reduce
itself down to a single lamina with (° fiber orien-
tation. From this configuration, any incremental
increase in the stiffener size causes a decrease
in buckling load. By initially increasing the stiffe-
ner size, the load share carried by the stiffener,
Pr increases with the increase in the cross sectio-
nal area, s,. The initial increase in p, is greater
than the increase in stiffness caused by the inc-
rease in s, therefore, the buckling load initially
decreases creating the local optimum.
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Fig. 6. Geometry and buckling mode of Case 3
for p=0.0000677.

Fig. 8. Geometry and buckling mode of Case 4
for p=0.0000677.

Fig. 7. Geometry and buckling modes of Case 3
for p=0.0001804.

Table 4. Resuits of (90°Beam/0°/90%s laminate

for 6=0.04
Active
ty ty b h p Buckling
Loads

0.0190010.00100 | 0.00100 0.00100 |0.0000677 P,
0.016360.00100 | 0.01845 | 0.14210 (0.0001345; P\, P, P;
0.0077810.00816 | 0.02830 | 0.14310 |0.0001702|P,, P,, Py, P,

Case 4:
0=0.04 and Ply Orientation (90°Beam/0°/90"s

For this configuration, three different optimum ‘

solutions are found. They are listed in Table 4
below. The same results are presented graphically
in Figures 8-10.

For this case, the global optimum occurs when
all four buckling modes occur simultaneously. Ho-
wever, the buckling load of this global optimum
15 less than that of the global optimum of Case
3. It appears as though the inner layer t, is the
preferred location for the (° fibers. The configura-
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Fig. 9. Geometry and buckling modes of Case 4
for p=0.0001345.

Fig. 10. Geometry and buckling modes of Case 4
for p=:0.0001702.

tion which gives p=0.0001345 corresponds closely
to the Case 3 global optimum. The only difference
is that more 0° fiber orientation volume is requi-



red when it is located at the outer layer t;. The
local optimum, p=0.0000677, corresponds exactly
to the Case 3 local optimum with the same load
value. Here the same reasons apply for the existe-
nce of this local optimum.

Case 5:
6=0.015 and Ply Orientation (0°Beam/90%0%s

For this configuration, two optimum solutions
are found. They are listed in Table 5 below. The
same results are presented graphically in Figures
11 and 12.

Here the global optimum is found when the
four buckling modes occur simultaneously. This
global optimum corresponds to the global optimum
found in Case 1. This follows since Case 5 is the
same as Case 1, except for the smaller volume
of material available. The local optimum found
with p=0.0000124 is not unique. the total stiffener
volume is uniquely defined but not the individual
dimensions of the stiffener height and width. This
is because the first buckling mode (the only active
mode in this case) dose not cause any flexure
of the stiffener so its cross sectional shape is not
critical to the overall buckling stiffness.

Case 6:
6=0.015 and Ply Orientation (0°Beam/0°/90%s

Table 5. Results of (0°Beam/90°/0%s Ilaminate

for 6=0.015
Active
t; tz b h p Buckling
Loads

0.00298|0.004110.01008 | 0.04029 0.0000156(P,, Py, Ps, P,
0.00576 | 0.00100{0.02720| 0.02720 {0.0000124 P,

Table 6. Results of (0°Beam/0°90%s laminate for

0=0.015
Active
t ts b h p Buckling
Loads
0.00100 { 0.00577 | 0.01814 | 0.03986 100000179 P,

For this configuration, only one optimum solu-
tion is found. It is listed in Table 6 below. The
same results are presented graphically in Figure
13. This case is similar to Case 2 except here
there is insufficient material available to produce
simultaneous buckling of several modes.

The optima of Case 7 are closely related to the
optima of Case 3. The only difference in the two
cases is the total volume of material available. As
in Case 3, here too, there is not sufficient material
available to get the simultaneous buckling of all
four modes.

Fig. 11. Geometry and buckling mode of Case 5
for p=0.0000156.

Fig. 12. Geometry and buckling modes of Case 5
for p=0.0000124.

Fig. 13. Geometry and buckling mode of Case 6.
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Case 7:
0=0.015 and Ply Orientation (90°Beam/0%/90%s

For this configuration, two different optimum
solutions are found. They are listed in Table 8
below. The same results are presented graphically
in Figures 16 and 17.

Case 8:
8=0.015 and Ply Orientation (90°Beam/90°/0%s

For this configuration, two different optimum
solutions are found. They are listed in Table 7
below. The same results are presented graphically
in Figures 14 and 15.

As in Case 4, the global optimum solution for
Case 8 occurs when all four buckling modes occur
simultaneously. Also there is a similar local opti-
mum to that of Case 4, which has only one active
buckling mode. One difference between Case 8
and Case 4 is that no local optimum in which
three buckling modes occur simultaneously could

Fig. 14. Geometry and buckling mode of Case 7
for p=0.00000386.

Fig. 15. Geometry and buckling modes of Case 7
for p=0.0000130.
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Table 7. Results of {90°Beam/90°0%s laminate

for 6=0.015
Active
ty ta b h p Buckling
Loads

0.00100 | 0.00650 | 0.00100| 0.00100 10.0000036 P,
0.00100 | 0.00584 | 0.00669| 0.09761 {0.0000130f P4, Py, P

Table 8. Results of {80°Beam/0%/90%s laminate

for 6=0.015
Active
ty ty b h p Buckling
Loads

0.00650 | 0.00100 | 0.00100 | 0.00100 |0.0000036 P
0.00329( 0.00345 | 0.00802 | 0.09386 10.0000125|P,, Py, Ps, P,

Fig. 16. Geometry and buckling mode of Case 8
for p==0.0000036.

Fig. 17. Geometry and buckling modes of Case 8
for p=0.0000125.
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Read input data
Ply orientation: ¢, ¢:, $em
Assigned total volume: 8

initialize design variables
t, t, b, h

Evaluate the total volume J
1
Calt program EIGANL
to set up [K]r and [Kdjv
L
Call program LASO2
for p1, pz, p3
T
Call program LEVYS
for ps

Update
design variables
b, b h

Calt program
IMSL DNCONG for design
optimization

Not optimum

Output of
regults

Fig. 18. Program flow chart.

be found for Case 8 as was found in Case 4.
Figure 18 shows the overall process of the pro-
gram summarized in the form of a flow chart.

CONCLUDING REMARKS

The design optimization problem of the stiffe-
ned composite plate for maximum buckling load
is a highly nonlinear problem. For almost all cases
investigated, there were multiple optimum solu-
tions. Some cases had as many as three different
local optima. For both total volume constraints(@=
0.04 and 0.015) examined, the best stacking confi-
guration was the (0°Beam/0°/90%s used in cases
2 and 6. The use of (° stiffener fiber orientation
was always superior to 900 stiffener fiber orienta-
tion regardless of the laminae ply orientation. The
laminae fiber orientation of (0°90%s gives better
results when used with 900 stiffener fiber orienta-

tion. However when used with 0° stiffener fiber
orientation, the (90°%/0%s laminae fiber orientation
was better.

ACKNOWLEDGMEMTS

This research was partly supported from the
Ajou university in 1992. The financial assistance
is gratefully acklowledged.

REFERENCES

1. Anderson, M. S., Stroud, W. J,, Durling, B. J. and
Hennessy, K.W., “PASCO: Structural Panel Analy-
sis and Sizing Code Users Manual” NASA TM-
80182, 1981.

2. Bushnell, D. “PANDA2 -Program for Minimum
Weight Design of Stiffened Composite, Locally Bu-
ckled Panels,” Comput. Struct, Vol. 25, pp. 469-
605, 1987.

3. Swanson, G. D., and Gurdal, Z,, “Structural Efficie-
ncy Study of Graphite-epoxy Aircraft Rib Structu-
res,” AIAA/ASME/ASCE/AHS 29th Structures, Si-
ructural Dynamics, and Materials Conference, Wil-
liamsburg, VA, April 18-20, pp. 85-97, 1988.

4. Shin, Y. S., “Optimal Design of Stiffened Lamina-
ted Plates Using a Homotopy Method,” AIAA/
ASME/ASCE/AHS 32nd Structures, Structural Dy-
namics, and Materials Conference, Baltimore, MD,
April 8-10, 1991.

5. Yang, T. Y., Finite Element Structural Analysis,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1986.
6. Scott, D. S. and Parlett, B. N.,, “LAS0O2,” NETLIB,

Argonne National Lab., Argonne, IL, 1983.

7. Golub, G. H., Underwood, R, and Wilkinson, J.
H., “The Lanczos Algorithm for the Symmetric Ax
=A Bx Problem,” Report STAN-CS-72-270,Depar-
tment of Computer Science, Stanford University,
Stanford, CA, 1972.

8. Jones, R. M., Mechanics of Composite Materials,
McGraw-Hill Book Company, Washington, D.C.,
1975.

9. Schittkowskl, K., “NLPQL: A FORTRAN Subrou-
tine Solving Constrained Nonlinear Programming
Problems,” Edited by Clyde L. Monma, Annals of
Operational Research, Vol 5, pp. 485-500, 1985.

(s 1 1992, 12. 28)

ECEZN 4 e





