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Parameter Estimation and Confidence Limits for the Weibull Distribution
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Abstract

For the three parameter Weibull distribution, the parameter estimation techniques are applied
and the asymptotic variances of the quantile to obtain the confidence limits for a given return
period are derived. Three estimation techniques are used for these purposes: the methods of mome-
nts, maximum likelihood and probability weighted moments. The three parameter Weibull distribu-

tion as a flood frequency model is applied to actual flood data.
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1. Introduction

The Weibull distribution, known as the genera-
lized extreme value type 3 distribution (GEV-3)",
was used to describe the reliability and life testing
at the beginning by Weibull®. In 1960s and 1970s,
there were many papers especially for the maxi-
mum likelihood estimation of the parameters for
the two or three parameter Weibull distribution
based on complete and censored samples” ®. The
Weibull model also has been used to fit the fre-
quency distribution of flood and drought events
in hydrology and water resources. The Weibull
distribution is very flexible model because this
model is close to the normal distribution or exac-
tly exponential distribution depending on the spe-
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cific values of the parameters. Rao
two and three parameter Weibull distributions ba-
sed on the statistical parameters such as mean,
variance and skewness coefficient. Boes et al®”
applied the two parameter Weibull model to the
regional flood quantile estimation based on the
index flood assumption and compared the simula-
tion experiment results of the estimation techni-
ques such as the methods of moments (MOM},
maximum likelihood (ML) and probability weigh-
ted moments (PWM). Heo et al''’ derived the
asymptotic variances of the quantiles for these th-
ree estimation techniques based on the regional
analysis for the two parameter Weibull model.
They also applied the regional Weibull model to
the annual flood data.

The basic statistical properties for the three pa-
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rameter Weibull distribution are described in this
study. The details of the parameter estimation te-
chniques based on the methods of moments, ma-
ximum likelihood and probability weighted mome-
nts are proposed. In spite of the Weibull model's
flexibility, there are only few papers for the confi-
dence limits™*'%!Y. Furthermore, these studies are
very limited: only for the method of maximum
likelithood or only for the two parameter Weibull
model. Therefore, the asymptotic variances of es-
timator of the quantiles for each estimation tech-
nique are derived to obtain the confidence limits
of the quantile for the three parameter Weibull
model. Also, these estimation techniques and con-
fidence limits are applied to actual flood data.

2. Model Description
The cumulative distribution function of the th-

ree parameter Weibull distribution is defined by
Johnson and Kotz!'?

F(x)zl—exp[ -—(\—x:;{" )B] XX, 0)]

and the probability density function (PDF) is given
by

f(x)= “B‘<‘X“ ;“)‘Q Y | 1“"[”( e ﬂ @

o) a

in which @>0 is the scale parameter, >0 is the
shape parameter and x, is the location parameter.
Note that the three parameter Weibull distribution
is related with the GEV-3 distribution®. If X is
GEV-3 distributed with the location parameter x,’,
scale parameter o' and shape parameter B’ (B’
is positive for the GEV-3 distribution), then —X
is Weibull distributed by using the Jacobian trans-
formation™ and by assuming that p=1/p', a=a'
/B’ and x,= —x,—a'/B’. If the location parameter
%,=0, then the PDF and CDF of two parameter
Weibull distribution are given by

F(x)=1-—expl — (x/a)?] x>0 3
and
i = 5 (/@ 1 expl~ (/)] @
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respectivly.
The mean and variance of the three parameter
Weibull distribution are given by

u=x,+al(1+1/B) ©)
and
o= I(1+2/B)—T*(1+1/§)] (6)

in which I'(w) is the gamma function with argu-
ment w. Likewise, the skewness coefficient is gi-
ven by

_T(1+3/B)— 3T(1+2/B)I(1+ 1/B)+2I%(1+ 1/B)
[I(-+2/8)—T31+1/8)]"

)

where the skewness coefficient y has a lower limit
of 11396,

For B>1, the mode can be obtained from (2)
as

mode(X)=x,+ a(-—@-_ﬁ;l' )W (8)
and for 0<B<1, the mode is at zero. The median

of the Weibull distribution is given by Johnson
and Kotz'?

med(X)=x, + allog(2)1"* ©

where log represents the natural logarithm. Fig.
1 shows some examples of the PDF of the Weibull
distribution as a function of B for fixed values

2.0
~~~~~~~~ g = 05
- f = 10
-------- g = 2.0
- g o= 3.0
-~ B = 4.0
xe=0.0, a=1.0
1o ] ( )

Fig. 1. Typical PDFs of the Weibull Dsitribution as
a Function of B for Fixed Values of a=1.0
and x,==0.0.
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of a=1.0, x,=0.0. Note that the three parameter
Weibull distribution is the exponential distribution
if B=10.

3. Estimation of Parameters

Three methods of parameter estimation for the
Weibull distribution are considered here. They
are: the methods of moments, maximum likeli-
hood and probability weighted moments.

3.1 Method of Moments

The moment estimators X,, a, p can be obtained
by substituting y, o and vy in Egs. (5), (6) and
(7) for corresponding sample estimates p, 6 and
Y. The skewness coefficient is only a function of
the shape parameter B. Thus, the approximate re-
gression equations of p as a function of skewness
coefficient are obatained as

B=3.156997 — 2.2826727 + .84038157"
— 13967627°+ .00841557* (10a)

for 0.35<y<6.6 and

B =3.5569876 — 4.703961y + 6.5869787
+13.3137y°— 13.86354y* — 133.588y°
—49.61454y% + 212.25297” + 180.3612y*  (10b)

for —0.98<y<0.35 in which ¥ is the sample skew-
ness coefficient. For a more precise solution of
¥, Eq. (10) can be used as the initial value for
a numerical procedure such as Newton-Raphson
method. For this purpose, Eq. (7) is rewritten
as

GP)=
I(1+3/)— 31+ 2/Bra+1/p)+2r:\a + 1/p)
[T(1+2/B)— %1+ 1/R) 12
-y=0 1D

and the first derivative of Eq. (11) with respect
to Q is given by

1
BT +2/B)—T2(1+ 1/B) 1"
{[—3r'(1+3/p)+6I"(1+ 2/ 1+ 1/p)
+3'(1+ /BT +2/B)—6r' (1 + /Bl
+ /I +2/p) -T2+ 1/p1+ra+

G'B)=

HI3E FA4Y - 19939 9 H

3/B)—3r(1+2/B)I(1+ 1/f) + 21+ 1/
B3 +2/B)—3I' (1 + /BT + 1/8)]}
(12)

where I'(w) is the first derivative of the gamma
function with argument w. Therefore, the estimate
of B at the iteration i+1 is updated by

B =B— GG B 13)

until satisfying the error criterion

l B|+1 BI
B

in which ¢ is a specified relative error.
Once { is obtained, & and %, are determined
from Egs. (6) and (5) as

| <e 14)

a=¢/[I(1+2/8)—I'*(1+1/B)]* (15)
and
%=(—al+1/p) (16)

For a two parameter Weibull distribution, p can
be obtained numerically by combining Eqgs. (5) and
(6) and @ is determined from Eq. (5) by letting
%,=0.

3.2 Method of Maximum Likelihood
The log-likelihood function of the three para-
meter Weibull distribution is given by

LL(x;%, a, B)=N log(B)— Nﬁlog(a)
+B-1 Z log(x; — X.)
¢ [ XX P
1; [ a ] (17)

where log represents natural logarithm. The deri-
vatives of Eq. (17) with respect to x, a and B
are

N
LL/g%=—(B~1) D (xi—x)"!
1=1

B3 [;f;x_o__
+(1 IZ] Q

T' =0 (18a)

__NB B S[XTXT_
aLL/ga=—~ +a§‘i[ - ] 0  (18b)
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N N
aLL/aB:—B“‘Nlog(a)Jr Zl log(x:—X,)
Srxcx P, (XX
_ [ . ] 1og[ . ]-0(18@

p=1

respectively. Equation (18) must be solved simul-
taneously to find the estimators of the parameters
X, @ and B. For a Newton-Raphson method, the
increments of x,, a and B can be written as

Ax, —§LL/gxt  —3*LL/gx.00

Aa =] —§’LL/gagx, — @*LL/ga?

AB —¢°LL/gBox, —*LL/aBoa
~ @*LL/9x.0B aLL/ox,
- 3*LL/gaaB oLL/ga
— o*LL/ax.0B* oLL/aB

(19

where —1 represents the inverse and the second
partial derivatives of the log-likelihood function
of the Weibull distribution are given in Appendix
A. The new estimates at the iteration (i+1) are
computed by

A1 =N+ AR (20)
until satisfying the error criterion
P AN | < (21

in which A represents one of the parameters x.,
a and B, and ¢ is a specified relative error.

As an alternative suggested by Jenkinson™, the
second derivatives in the inverse of Eq. (19) can
be replaced by corresponding expected values (see
Appendix B) and then the inverse of the informa-
tion matrix, say II7), can be written as

ob  ’h apf
B-1*  BE-1 B-D
Lo L} oh o 99
=% sen g ® |®@
_opf s
-1 ag Bc
where
a=Ta-2/p1+I"2)]-T*1~1/pll1+w
(1-1/pF (23a)
b=1+I"@)~ [["(2)]*=n%6 (23h)
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c=TA-2/)—I*(1—1/) (23¢)
f=rQ-2/ML1-I"@)+y(1-1/p)] (23d)
g=T(1-2/Br'@2)—~T* 1~ /B[ 1+w(1-1/B)]
(23e)
h=T1-1/B){1+I"@)—T' @01+ w1 1/8)1}
(23f)
D=be+f (23g)

where I (2) and y(w)=T"(w)/r(w) are the second
derivative of the gamma function and a digamma
function with argument 2. From Eqs. (19), (22)
and (23), the increments of the parameters at ith
iteration may be written as

2 ‘ 2 - L -
A= Nln{(ﬁ bl) [ %1; ] B(gz-}—]n { a;aL ]
Y o
o= ) ]
- ag;%,—ﬁ»v I} (24b)
o]
+ag| "aLL |+ a;‘;‘ ]} (240)

These recursive equations are repeated until sati-
sfying Eq. (20). Note that the Jenkinson procedure
for the three parameter Weibull distribution is
only valid for §>2.

For a two parameter Weibull distribution, x,=0
in Egs. (17), (18b) and (18¢c). Equating Eqs. (18h)
and (18¢) to zero and combining them give

N
N Ng D log(x)
N+B Z log(x) — — L‘_‘,&: ............ — =0 (25)
pS

vl

This equation is only a function of B. Soiving Eq.
(25) for B gives the maximum likelihood estimator
B and then & can be obtained from Eg. (18b).
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3.3 Method of Probability Weighted Mome-
nts

The general form of the probability weighted
moments (PWM) of the three parameter Weibull
distribution is given by Greenwood et al.’®

A, =E[X1—-F&)]
=L et D BTAT U] (26)
r+1

in which r is a nonnegative integer. The first th-
ree PWMs are given from Eq. (26) as

Av=x,+al(1+1/B) @n
Ar=[x.t0a2 YI(1+1/p)]/2 (28)
Ar=[x+a3 " T(1+1/B)]/3 (29)

By substituting the first three population PWMs
for the corresponding sample PWMs, Ao, A, and
A,, the PWM estimator of the shape parameter
B is a solution for

1-31  3A,-A
1—2-8 3A1“A4)

(30)

where B can be obtained by the Newton-Raphson
method using the value of ﬁ from Eq. (10) as an
initial value. Then, the PWM estimator of the pa-
rameter a may be obtained by combining Egs.
(27) and (28) as

a=(A—2A)/[(1- 29T (1 +1/p)] 63))
Finally, the estimator of x, is given by
%=A,—al1+1/p) 32)

in which the sample PWM, A is given by Land-
wehr et ald”

for r=0 (33a)

g“>)
Z |-
M-
»

x>

_1 i © N-DN—j—1)-(N—j—r+1)
"NS5T (N=D(N—2)«(N—1)
for r>1 (33b)

where x; is the order statistic such that x;<x,<---
SXN.
For a two parameter Weibull distribution (x,=

I3 L1993 9 A

0), the PWM estimators are given from Egs. (27)
and (28)

B=log(2)/[log(Au/A;) — log(2)] (34)
and
a=Ay/T(1+ 1/B) (35)

Note that the method of PWM does not need any
iterative procedure for a two parameter Weibull
distribution.

4. Confidence Limits on Quantiles

The y=(1—a) confidence limits X; on the po-
pulation quantiles may be determined by

Xi= )A(Ti' Up- 29T (36)

where u;_,z is the 1—a/2 quantile of the standard
normal distribution, '5(1- is the quantile estimator
corresponding to return period T, and Sy is the
standard deviation of Xr. The quantile estimator
X of the Weibull distribution can be obtained
from Eq. (1) as

X7=%, + &l —log(1/T) v 3"

where F(x) is replaced by 1—1/T. Also, Chow"®
expressed the quantile estimator Xp as

Xr={i+Kss (38)

where o and ¢ are the sample mean and standard
deviation and Kr is the frequency factor.

The derivations of St for each method of esti-
mation are described here to obtain the confide-
nce limits in Eq. (36).

4.1 Standard Error by Moments
The variance of Xr based on the moments are
given by Kite!®

Si¥=Var(X) = (u/N){ 1+ Ky + Ke¥(y,— 1)/4 +

(0Kr/9v)(2y:— 37" — 6+ Kr(y;— 6yy/d —
10y/8) 1+ (9K+/0v)*Lye — 3yys— 6y + Oy’ys/

4+357°/4+9]} (39)
where the cumulants are given by
Y= pa/pe™? (40a)
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Yo W/t (40b)
Y3 = ps/pg™® (40c)
Ys= pe/ s’ (40d)

and the rth central moments,

}Jzz:(lz[Dz"Dlzj (41a)
us=a*[ D3~ 3D.D, 4+ 2D;?] (41b)
[T 04[D4 - 41)31)1 + 6D2D]2 - 31)14] (4] C)
Us = a?[Ds - 51)4[)] -+ 10D3D12 - 10D2D1* -+ 4[)13]
41d)
U= (ls[D(; - 6D5D1 + 15D4D12 - 20]-)3[)13
+ 15D2D14 - SD]GJ (416)

The derivative of of Kr with respect to y can writ-
ten as

(0K1/07) = (9K1/9B)(9B/aY) (42)

Substituting Eqs. () and (6) into Eq. (38) and
solving for Ky yield

[~ log(1/T)J"¢ —T(1+1/B)
[Ta-+2/8)—-T*1+1/8)]"?

K= (43)
then the derivative of Ky with respect to § is gi-
ven by

( oKr

& )—[(Dlwl—log(B)B‘/ﬁ)(Dl D2

~(BY#—~Dy)(— Dayz+ Dityn) I/
BAD, — Dy?)** (44)

where D, =I(1+1/B), w,=y(1+1/B) and B= ~log

(1/T). The derivative of y with respect to 3 can
be obtained from Eg. (7) as

(ov/oB) = 3L, — DA~ Dyys + 2D Dy + DDy

-~ 2Dy y1) = (Da— 3D, Dy +2Dy%) -

Do+ D2y ) 1/ BAD, — D] (45)

Finally, the asymptotic variance S+* of Eq. (39)
is obtained from Egs. (40) through (45).

4.2 Standard Error by Maximum Likelihood

The asymptotic variance of the maximum likeli-
hood estimator of quantile, f(T, the three parame-
ter Weibull distribution can be written as®
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Sr*=(@Xr/9x.f Var(x)+(9Xr/gaf Var(@)+(g
X1/9B) Var(B)+2(9X1/9x.)(@%X1/90)Cov(k,,
@)+ 2(9Xr/9a)9Xr/aB)Cov(a, B)+2(9%Xr/a
x)(@X1/aB)Cov(%,, B) (46)

The derivatives of Xy with respect to the parame-
ters x, a and B are

" 9Xr i )

[———ax“ ]- 1 (47a)

oXr .

[_ - |=1-t0ga/m7 (47b)

__,Q%L. e — 176

laB- B log{ - log(1/T)][ ~ log(1/T))
(47¢)

and the variance and covariance terms are obtai-
ned from Eq. (22) as

Var(x,)=a’b/NB— DD (48a)
Var(a)=a‘a/NB?D (48b)
Var(B) = #%/ND (48¢)
Cov(k, @)= —ah/NB(B— DD (48d)
Cov(x,, B)=0ag/ND (48e)
Cov(k, B)=apf/N(B—1DD (48f)

Thus, substituting Eqs. (47) and (48) into (46) vyie-
Ids

<o O f b 2BV N
= ND {(B~ B o oe®
%2 [a—2glog(B)+ (log(B))Z]} 49)

4.3 Standard Error by Probability Weighted
Moments

The asymptouc distribution of the sample
PWMs, A, A, A; can be written as?2MV

Ag A [Aw/N Aa/N Ag/N
A [-~TYN| At [ Aw/N AN AuN (50)
A A [Aw/N Ap/N Ap/N

where -~ reads “is asymptotically distributed as”
and TVN is an abbreviation for trivariate normal
distribution and A; are given by Heo et al’!

RN L Fpe



Aw=0*{T(1-2/8)—T*(1+1/p)] (51a)
An=@/2)[27°T(1+2/p)
+(1—2"HI%1+1/B)] (51b)

Ap=(a2/2)[ {377~ 2-2PH(1/2)}T(1 +2/B)
—2(37 827 VO*(1+1/)] (51c)

Ay=a27 [ H(/2)I 1 +2/p)—T*(1+1/p)] (51d)

Ap=(a¥/2)[3"¥*H(1/3)(1 + 2/B)
—(2:67P =2 YOI’ (1+1/p)] (51e)

Ap= a3 ¥[HE/ITA+2/8) - T*(1+1/8)] (51

where H(z) is a hypergeometric function.

Since the asymptotic variance of the PWM esti-
mator of quantile, R+ can not be found directly,
the following transformations are used

@1—’ 1}1—’ }}1—> a-> Xy

AZ AZ Ai{ ﬁ

R p

where R:(BZ\Z—AO)/(Z&—AO) in the first transfo-
rmation and B is given implicitly by (1—3"%%)/(1
—2-¥)=R in the second transformation. Finally,
the asymptotic variance of Xr is given by

a1 o 2/p -
Sy N [Var(x,) + B**Var(a)
o? A
+ —‘—3—4— (logB)?B**Var(B)

+ 2B Cov(x, a)— %‘;— logB B
[Cov(k, B)+B"Cov(d, B)]] 52)

where

Var(io) = WOZAQ() + 2W()W]A01 + wlen + 2WOWBC1

H+ 2W1W|3C2H + W32CH2 (533)
Var(6)= To?Agw+ 2ToTildoy + Ti2Ay + 2T, TCH+
2T, TsC:H+ T@CH? (53b)
Var(B)=CH? (53¢)

Cov(ke, @)=W;ToAw+ WyT1Ao+WiToAn+WiT,
Ay +WTeCiH+ W, TpC.H + WpT,C,
H+W,T,C,H+ W, T,CH? (53d)

13 & 4519935 9 H

Cov(k, B)=WoCiH+W,C,;H+W,CH? (53¢)

Cov(@, B)=TaC:H+ T\C:H+T,CH? (530
and

Wo=g%,/3A0= —27VB/f(1— 2" 1) (54a)

W= 9%x/9A1=2/(1—2" %) (54b)

We=9x,/0B= —al'(1+ 1/B)log(2)2~ V8/[p2(1— 2"~
V8] (54¢)

To=00a/0A=1/[(1—-2" Y"1+ 1/8)] (54d)
Ti=ga/9A:=—2/[(1—-2"YOI(1+1/p)]  (54e)

Tp=g0/ap=[(1~2""*)y(1+ 1/p)— log(2)2~ ]/
[BH(1—27")r(1+1/B)] (54f)

and

C=[AnB " —2"")—2Au(3 "~ 1)

+380(2 - 1)I/M (54g)
Ci=[An(3" =271 —2A,(3" V*—1)

+3A(2" VE—-1DI/M (54h)
CZ = [A02(3k B — 2 - VB) - 2A12(3~ B 1)

+3Ax(27 P -1} 1M (54i)
Cy=[Ci3 VB~ 27VBy~2Cx(3" 8- 1)

+3C,2 Y~ 1)I/M (54j)
M=al(1+1/B)(1—2" ¥y (54k)

H _ BZ(l — 21/6)2
" log(2) 27 VB(1— 37 )~ log(3) 3~ V(12" P
(541)

5. Data Application

The annual flood data of Rock River at Afton,
Wisconsin (1930-1983) is used to compute the pa-
rameter estimates, quantiles and confidence limits
for the Weibull distribution. The sample mean,
standard deviation and skewness coefficient of the
annual flood data are 17899, 73.44 and 0.3839,
respectively. The moment estimates can be obtai-
ned from Egs. (13), (15) and (16). The maximum
likelihood estimates are evaluated from two nu-
merical procedures: (1) Newton-Raphson method
and (2) Jenkinson procedure. Note that the Jenki-
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Tabie 1. Parameter Estimates of the Weibull Distri-

bution
Parameter
Method
X, [ B
MOM 8.72255 191.9884 2.44457
Newton-Raphson 2348409 1756373 2.24087
Jenkinson 2348550 1756357 2.24085
PWM 2899386 169.3316 2.08271

Table 2. The Quantiles and 95% Confidence Limits
for the Method of Moments

Return Nonexceedance Lower Quantile Upper
Period Probability Limit Limit
T q )A(T
2. 50000 1622363 173.9800 195.7236
5. 80000 2145857 2419716 269.3575
10. 50000 2453957 278.7747 312.1538
20. .95000 268.3896 309.4684 350.5472
50. 298000 2914799 344.1593 396.8387
100. 299000 305.3629 367.3067 429.2505
500. 99800 330.2424 414.0814 497.9204

nson procedure is valid only for the flood data
whose shape parameter §>>2. Usually, the Newton-
Raphson method converges faster than the Jenki-
nson approach®, For example, the Newton-Raph-
son method converged at 5th iteration, but the
Jenkinson procedure converged at 59th iteration
for this annual flood data. Therefore, the Newton-
Raphson method is recommended unless there is
a convergence problem. The probability weighted
moments estimates can be found from Egs. (30)
through (32). These parameter estimates are given
in Table 1. For given these parameter estimates,
the quantiles and 95% confidence limits, correspo-
nding to return periods T=2, 5, 10, 20, 50, 100
and 500 of the Weibull distribution are given in
Tables 2, 3 and 4, respectively. As shown in Tab-
les 2, 3, and 4 the confidence limits of the ML
show the narrower bands than the MOM and
PWM for all return periods.
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Table 3. The Quantiles and 95% Confidence Limits
for the Method of Maximum Likelihood (Newton-

Raphson)
Return Nonexceedance Lower Quantile Upper
Period Probability Limit Limit
T q XT
2. 50000 158.3950 172.6207 186.8464
5. .80000 223.1970 240.6773 258.1576
10. .90000 256.7949 2783181 299.8413
20. 95000 283.9023 310.0725 336.2428
50. 98000 313.6935 346.3179 3789423
100. 99000 333.1546 370.6953 408.2359
500. 99800 371.6443 420.3851 469.1259

Table 4. The Quantiles and 95% Confidence Limits
for the Method of Probability Weighted Moments

Return Nonexceedance Lower Quantile Upper
Period Probability Limit Limit
T q X
2. 50000 1492500 171.0014 192.7528
. .80000 2155745 241.7937 268.0130
10. 90000 249.1854 2817220 314.2586
20. 295000 2748350 3157600 356.6850
50, 98000 3013204 354.9625 408.6046
100. 99000 317.6934 381.5200 445.3465
500. 99800 348.0656 436.0844 524.1031

6. Conclusions

The parameter estimation techniques for the
two and three parameter Weibull distribution are
applied based on the methods of moments
(MOM), maximum likelihood (ML) and probability
weighted moments (PWM). The results of the pa-
rameter estimations are as follows: The iterative
procedures are always required for each estima-
tion method to estimate the parameters for the
three parameter Weibull distribution. The method
of probability weighted moments is the simplest
estimation technique especially for the two para-
meter Weibull model because no iterative proce-
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dure is necessary. Therefore, the PWM estimates
can be used as initial values of the iterative pro-
cedure for the MOM and ML estimates. For the
method of maximum likelthood, the Newton-Ra-
phson method converges faster than the Jenkinson
approach.

As a major contribution of this study, the asym-
ptotic variances of the MOM, ML and PWM quan-
tile estimators are derived as function of sample
size, return period and the parameters to obtain
the confidence limits of these quantiles for the
three parameter Weibull distribution. These for-
mulae do not have simple and nice forms but can
be evaluated numerically. As shown in data appli-
cations, the ML method shows the tight confide-
nce limits.

The derived asymptotic variances of the MOM,
ML and PWM quantile estimators are based on
the three parameter Weibull distribution. For a
future study, the derivation of the asymptotic va-
riances for the two parameter Weibull model,
which are easily obtainable, can be uvseful in flood
frequency analysis because the parameter estima-
tion based on the three parameter model someti-
mes cannot be applicable depending on the data.
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Appendix A Second Partiai Derivatives of the
Log-Likelihood Function of the Weibull Distribu-
tion.

—'LL/gx =B —D/a*l[Zy: *+ BEyF*]  (AD)

—o'LL/gugx, = (B/ayZyf ! (A2)

— o°LL/9%:0B = Z(xi— Xo) '~ (B/a)Zy " log(y)
~(1/a)Ey ! (A3)

— PLL/go*= — (B/a)IN—(B+ DZy] (Ad)

— ¢?LL/gogP=(1/a)IN — Zyf — BEyflog(y)] (A5)

—’LL/gB?=N/B*+ Zy[log(y) T (A6)

where yi=(x;—x,)/0, T represents summation
from 1 to N, and log represents the natural logari-
thm.

Appendix B Expected values of the second par-
tial derivatives of the log-likelihood function of
the Weibull distribution.

B[~ ‘j;il? |= N(B U ra- ) B1)
E[—%E-'—J [I;[HI"(Z)] B3)
o
B2 =~ Ya-upra-p

(15 w— 18] (B5)
E[*%%%——]— “re) (B6)

where I'(w) and w(w) are gamma and digamma
function with argument w and I (2} and IV (2)
are the first and second partial derivatives of a
gamma function with argument 2, respectively.
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