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Abstract

The log-Gumbel distribution in real space is defined by transforming the conventional log-Gumbel
distribution in log space. For this model, the parameter estimation techniques are applied based
on the methods of moments, maximum likelihood and probability weighted moments. The asymptotic
variances of estimator of the quantiles for each estimation method are derived to find the confidence
limits for a given return period. Finally, the log-Gumbel model is applied to actual flood data to

estimate the parameters, quantiles and confidence limits.
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1. Introduction

The log-Gumbel distribution is one of the com-
monly used distributions for frequency analysis
in hydrology. In the literature, the log-Gumbe! di-
stribution is also known as the Frechet distribu-
tion". The importance of using the Gumbel and
log-Gumbel distributions was indicated by Shen
et al. and Ochoa et al.”’ They studied the effect
of the tail behavior assumptions of these distribu-
tions for fitting the annual floods of more than
200 stations in Texas, New Mexico and Colorado.
They concluded that the log-Gumbel distribution
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provided a better fit for more than two-thirds of
the total stations and also showed a greater esti-
mates of extreme flood magnitude than the Gum-
bel distribution.

The log-Gumbel distribution is a special case
of the Generalized Extreme Value (GEV) distribu-
tion, especially the GEV-2 distribution. Prescott
and Walden™ derived the expected values of the
second order derivatives of log-likelihood func-
tions of the GEV distribution with respect to the
parameters. Later, Prescott and Walden™ showed
the iterative estimation procedure for the maxi-
mum likelihood estimates of the GEV distribution
and derived the observed information matrix of



the censored samples as a reasonable approxima-
tion for the maximum likelihood estimates.

Hosking et al®” estimated parameters of the
GEV distribution based on the method of probabi-
lity weighted moments (PWM) and gave the asy-
mptotic variances of the parameters and table va-
lues of the asymptotic variance of the PWM quan-
tile estimator. Recently, Liu and Stedinger® com-
pared the variances of the PWM quantile estima-
tor for the two and three parameter GEV distri-
butions. Although there is a relationship between
the log-Gumbel and GEV models, there is few
studies for the log-Gumbel model, especially for
the confidence limits. The purposes of this study
are to introduce the parameter estimation techni-
ques and to derive the asymptotic variances of
estimator of the quantile to obtain the confidence
limits for the log-Gumbel distribution in real
space. The second chapter of this paper defines
the log-Gumbel model in real space by transfor-
ming the conventional log-Gumbel mode! in log
space, and describes the relationships between
this model and the GEV model, and statistical
properties of the log-Gumbel distribution. The
methods of moments (MOM), maximum likelihood
(ML) and probability weighted moments (PWM)
are proposed to estimate the parameters of the
log-Gumbe! distribution in the third chapter. To
obtain the confidence limits of the MOM, ML and
PWM quantile estimators, the asymptotic varian-
ces of the corresponding quantile estimator are
derived for a given return period and parameters
in the fourth chapter. Finally, the log-Gumbel mo-
del} is applied to the annual flood data of the St.
Mary’s River in Canada.

2. Model Description

Consider that random variables Y and X are
related as Y=log(X—x,) in which log represents
the natural logarithm. It may be shown that Y
is Gumbel distributed with location parameter y,
and scale parameter a, if X is log-Gumbel distri-
buted with parameters x,, y, and a. Thus, the
cumulative distribution function (CDF) of the log-
Gumbe! distribution is given by
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log(x—x.)—y,
_loglx ax y__]}

F(x)= exp{ - exp[ — 0y

for x>x, and a>0.
Likewise, the log-Gumbel distribution is related
to the GEV-2 distribution. For instance, by assu-
ming that x,=x,+a'/p’, a=—B" and y,=log(—
«'/B") it may be shown that the CDF given by
Eq. (1) can be written in the form of CDF of the
GEV-2 distribution (1) as
B'(x—x,) ]”ﬁ'}

o= expf —[1- B

@

in which x,, @’ and B’ are the location, scale and
shape parameters of such GEV-2 distribution and
the shape parameter B’ is negative. Furthermore,
assuming that a=1/p and y,=log(0@—x,), it may
be shown that Eq. (1) takes the form

C o 0x, B .
F(x)—exp[— (7_—;: ) } 3)
in which 0>x, B>0 and x,<x<coc. Equation (3)
is another form of the log-Gumbel distribution.
In addition, it may be also shown that by assu-
ming 8= —1/p, 0=x and x,=x,/+a'/B’, the
CDF of Eq. (3) takes the form of the CDF of the
GEV-2 distribution of Eq. (2). In the remainder
of this paper, we will use the log-Gumbel model
given by Eq. (3) to derive other properties of this
distribution.

The probability density function (PDF) of the
log-Gumbel distribution is given by

=L 2= Y] (2]

(X_pxo) XXy / VXX,

Figure 1 shows some typical shapes of the PDF
of the log-Gumbel distribution.

The rth moment of X around x, can be shown
to be

E[X—x)]1={0-x)T1~1/B) 6))

where I'(W) is the gamma function with argument
w. The mean and variance can be obtained as

p=X,+ (0 —x)I(1—1/B) {6)

and
o?=(0—x[T(1 —2/8)— (1~ 1/)] U]
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Fig. 1. The Probability Density Functions of the
Log-Gumbel Distribution

Note that the mean will exist for f>1 and the
variance will exist for §>2. Likewise, the skew-
ness coefficient is given by

_ TQ-3/p)—3ra—-2/pra—1/p)+2ra —-1/p)
(ra—-2/p)—ra—1/p)"

@®

for >3. Note that the skewness coefficient of the
log-Gumbel distribution is greater than 1.1396.
Additionally, the mode is given by

1+8 ] g

9
8 ©)

mode(x)=x, +(8 %,

3. Estimation of Parameters

Three estimation procedures are presented for
the log-Gumbe! distribution; method of moments,
method of maximum likelihood and method of
probability weighted moments.

3.1 Method of Moments

By substituting y, o and y in Egs. (6), (7) and
(8) for corresponding sample estimates c:s and
Y, the method of moments estimators é, B and
%, can be obtained. The skewness coefficient in
Eq. (8) is only a function of the shape parameter
. . Thus, the moment estimator of the shape pa-
rameter, ﬁ can be obtained from the approximate
polynoimal equations derived by

B=222.5222 — 313.1802% + 179.5053y* — 50.6058Y°
+6.9785427* — 0.3762287° (10a)
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which is valid for 1.48<y<5.4 and

B=1731.6756—2342.81437 + 1802.15667>  (10b)

valid for 1.1396<Y<148 in which y is the sample
skewness coefficient. For a more precise solution
of ¥, Eq. (10) can be used as the initial value
for a numerical procedure such as Newton-Raph-
son method. For this purpose, Eq. (8) is rewritten
as

_ Ta-3/f)-3ra - 1/Bra- ) +2ra-vp
[ra-2/B)-ra- 1/

an

and the first derivative of Eq. (11) with respect
to ﬁ is given by

1

pIrQ- 2/[3) IY(1— 1/[3)]5’Z
{[3[“(1—-3/3) 61— 2/13)1"(1 1/B)—3r’
(1- 1/B)r(1 2/B)+61"(1 1/B)I‘“(1 1/B)]
(ra-2/8)~T*(1~ 1/B)]— [T ~3/B) 30
(1-2/ArA—1/B)+2r°(1 - VB)1[3r'a -
2/)—3I"1—1/B)rQ-1/p)l} (12)

F(@)=

where I''(w) is the first derivative of the gamma
function with argument w. Thus, the recursive
equation to estimate ﬁ at the iteration i+1 is gi-
ven by

BHl:ﬁi_

and is repeated until satisfying the following error
criterion

| BiH"Bi_
B:
in which ¢ is a specified relative error.

Once B is determined from Eq. (13), %, is obtai-
ned by combining Egs. (6) and (7) as

FB)/F B 13)

| <e (14)

. sI(1—-1/p)
=p- 15
T T A~ 2/B) - T - /P ™ (15
Finally, 0 is determined from Eq. (6)
I s (16)
ra-— I/B)

Note that the moment estimators will exist for
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B>3 because the population moments exist depe-
nding on the values of the shape parameter.

For a two parameter log-Gumbel distribution
(x=0), B can be obtained numerically from Eq.
(15). Once P is obtained, 6 is determined from
Eq. (16). '

3.2 Method of Maximum Likelihood
The log-likelihood function of the three para-
meter log-Gumbel distribution is given by

LL(Gsx,, B, 0)=Nlog(P) + NBlog(8—x,)
N
~(B+1) Y log(xi—x,)
i=1

- N [ iﬁ:"x: I an

where N is sample size. Taking partial derivatives
of the log-likelihood function with respect to x.
B and 0, respectively, and equating each to zero
give

NB

—Xo

N
+BO— %) 2 (xi—%0) 7P

N
oLL/g%=——5 +(P+1D D xi—x)"
i=1
N
—BO—x) Y (x—x) ® V=0 (18)
i=1

N
aLL/aB=%+Nlog(6—xo)~ > loglsi—x)

-3 [ Ted 22 =009

__Np O B
OLL/g0=——""— —BO—x) D (x—x,) =0
i=1

0%,
(20)
These equations should be solved simultaneously
to find the estimators of the parameters x,, B and
0. The increments of the parameters x, $ and

0 based on the Newton-Raphson method can be
written as

Ax, —d’LL/gxt  —o°LL/9x.00
A8 |=| —a*LL/gBax, —&*LL/p9

AR —o*LL/3Box. —o°LL/9Ba0

—9’LL/ox%.gB | -1 oLL/9%
—9*LL/309p aLL/90
—'LL/gp? JLL/aB (21

where —1 represents the inverse of matrix, Ax,,
A8 and AP are the increments of the parameters
¥, O and B, respectively, and the second partial
derivatives of the log-likelihood function of the
log-Gumbel distribution are given in Appendix A.
Therefore, the new estimates at the iteration (i+
1) are computed by

A=A+ AN (22)
until satisfying the error criterion
P A1 | <e 23

in which A represents one of the parameters x,,
0 and B, and e is a specified relative error.

3.3 Method of Probability Weighted Mome-
nts

The general form of the probability weighted
moments (PWM) defined by Greenwood et al®
is applied to the three parameter log-Gumbel dist-
ribution as

B.=E[X(F(x))]

1
r+1

[xa+ O x)(r+ D01~ 1/B)]
(24)

which is valid for B>1 and r is a nonnegative
integer, Using the first three PWMs (r=0, 1, 2),
the PWM estimators of the log-Gumbel distribu-
tion are given by

s f
1 - 2”3 - ZE] - ﬁ[) (25)
s ra-1p-—1 -~ -
0=Bo+ -2~ 1/p) (2B~ Bo) (26)
. 18R — 9R

_ 2By~ 2B, @n

(zllﬁ — 1)

in which the sample PWM B. is given by Hosking
et al®

KL ARARCUR



~ 1 X
Bo=< ij for r=0 (282)
N 5
f_1 < (=DG—2G—D
Br-N JZ]X] (N-DIN—-2)—(N—1) for r>1
(28b)

where x; is the order statistic such that x,<x,<--
<xn. The PWM estimator of the shape parameter,
ﬁ can be obtained numerically by the Newton-Ra-
phson method. The value of ﬁ from Eq. (10) can
tA)e used as the initial value to solve Eq. (25) for
.

For a two parameter log-Gumbel distribution
(x,=0), the PWM estimators can be obtained from
the first two PWMs (r=0, 1)

B=log(2)/log(2B./Bo) (29)
and
6=By/T(1-1/B) (30)

Note that for a two parameter case, the PWM
estimates can be determined directly without any
iterative procedure.

4. Confidence Limits of Estimator of Quan-
tiles

The y=(—a) confidence limits X; on the po-
pulation quantiles may be determined by

Xlzxr'—" Uy - 02Sy (3D

where Uj..o5 is the 1—a/2 quantile of the standard
normal distribution, X7 is the quantile estimator
corresponding to return period T, and St is the
standard deviation of Xr. The quantile estimator
X1 of the log-Gumbel distribution can be obtained
from Eq. (3) as

X1= %o+ @ %)[ —log(1—1/T)] 1 (32)

where the cumulative distribution function, F(z()
is replaced by (1—1/T). Also, the estimator Xp
may be generally written in terms of sample mean
U, sample standard deviation ¢ and the frequency

factor K410

Xr=i+ Ko (33)
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4.1 Standard Error by Moments
The variance of Xr can be expressed asV
= Var®n =" {1+ Key + Kelts~ 1/4
+ (@Kt/av)(2v2— 3y*— 6+ Krlys— 6yy»/d — 10y/4)]
+ (9K1/avYLya—3vys—6y2 + 9y*y/4+ 35v*/4+ 9]}

(34)

where p, is a rth central moment and
v= ua/ps¥? (35a)
Y2 = Wb’ (35b)
Ya= s/ (35¢)
Ya= e/ 112" (35d)

The derivative of Kr with respect to y can be
written as

(0K+/av) = (9K1/0BXaB/aY) (36)

Substituting Egs. (6) and (7) into Eq. (33) and
solving for Ky yield

[—log(1—1/T)]~VE—T(1—1/B)
[ra-—-2/p)- rx1-1/g)J*?

K;= @7
then the derivative of Ky with respect to B is gi-
ven by

(%) =[(— Dy +10gSS™*)(D,—D®)—
‘ ’ (878 —Dy)Dayz—Di*y)l/
BEE(DQ__ D]:z)a/z (38)

where D,=T(1~1/B), y.=y(1—1/B)=I"(1—r/B)/T
(1—1/B) and S=—log(1~1/T). The derivative of
v with respect to § can be obtained from Eq. (8)
as ‘

(0v/9B)= 3L~ D) Daw3 — 2D:Dyyr — DaDayy
+2D*y1)+ (D3~ 3D:D; + 2D Doy,
— DAy I/LBHD; — D, 3%2] 39

Thus, Eq. (36) can be obtained from Eq. (38) and
the reciprocal of Eg. (39).

To find the cumulants vy, vs, y; and y; in Eq.
(35), the central moments of the log-Gumbel dist-
ribution are given by

te= (08— %)L D, — D] (40a)
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ps= (6 —x.)°[ D3~ 3D,D, + 2Dy*] (40b)
M= (0— %) [ Dy —4D;D; +6D,2— 3D,*] (400
=0 %Y [Ds—5DD, + 10D;2—10D,D,3

+4Dy°] (40d)
Hs= (0 — %,)*L Ds— 6D;D; + 15D,2 — 20D,D,*
‘+‘ 15D2D1““ 5D16] (40&)

Finally, the asymptotic variance of Xr of Eq. (34)
is obtained from Eqs. (35) through (40).

Note that the frequency factors Kr of Eq. (37)
is a function of skewness coefficient and return
period. Therefore, the frequency factor values can
be obtained for given skewness coefficients and
return periods as shown in Table 1. Hence, the
quantile )Ah- can be easily obtained from Eq. (33)
using Table 1 when the sample mean, standard
deviation and skewness coefficient are known.

4.2 Standard Error by Maximum Likelihood

The asymptotic variance of the estimator of
quantile, 5(T, for the three parameter log-Gumbel
distribution is given by®

s v

+( "’;T )Var(ﬂ)+2( oXs X 3;& )

Cov(X, 9) + 2(

)ZVar(é)

aa)((; )( 667;1'

+o ST & ";;T JCovtie, B

in which the derivatives of Xt with respect to the
parameters X, 0 and § are given by

)c )

aXT T _ _
(a )_1 [—log(l—1/T)] ¥ (422)
oXr\_ _ -

(———'——ae )-»[ log(1—-1/T)]~# (42b)

(aXT )= Bz %1080 —log(1—1/T)]-»
[~ log1—1/T)]"# 420)
and

Var(x)= 0 —x{1+I"(2)— [I"2) F}/Np’D (43a)

Table 1. Frequency Factors for the Log-Gumbel! Di-
stribution

Coefficient of =~ Nonexceedance Probability q

Skewness 0.5 0.8 0.9 095 098 099

Y Corresponding Return Period T
2 5 10 20 50 100

114 —.1692 7115 12999 18684 2.6101 31704
120 —.1709 .7083 12977 1.8686 26157 31817
130 —.1761 6988 12913 18698 2.6336 32172
140 -—.1846 6826 12798 1.8704 2.6618 3.2753
150 —.1905 6705 12705 1.8697 2.6810 3.3166
160 —.1949 6608 12628 1.8684 26952 3.3483
170  —.1998 6497 1.2536 1.8661 2.7100 3.3827
180 —.2048 6376 1.2431 1.8626 27248 3.4186
190 —~.2097 6248 12316 18580 2.7386 3.4542
200 —.2143 6121 12197 1.8523 2.7506 34876
220 —.2217 5894 1.1972 1.8398 2.7676 3.5418
240 -—.2264 5732 11804 1.8290 2.7765 3.5761
260 -—.2291 5632 11697 18215 2.7805 3.5954
280 —.2309 5564 11622 18160 2.7827 3.6080
300 —.2326 5493 1.1543 18102 2.7844 3.6202
320 —.2348 5398 11435 18017 2.7859 3.6355
340 -—.2376 5265 11281 1.7891 2.7864 3.6548
360 —.2408 5092 11073 17711 2.7841 3.6760
380 —.2439 4891 1.0822 17480 2.7773 3.6950
400 —.2464 4684 10565 17230 2.7662 3.7076
420 —.2478 4550 1.0372 17033 2.7552 3.7127
440 —.2481 4503 1.0308 16966 2.7461 3.7136
460 —.2477 4558 1.0383 17044 27559 3.7125
480 —.2467 4662 10523 17187 2.7639 3.709%0
500 —.2461 4722 10603 17267 2.7680 3.7062

Var(®)=(0— x?{EJL1+T"(2)]—EZl/NF?D (43b)

Var(B)= p?E/ND (430)
Cov(k,, 8)=(0— x{Es[1+I"(2)]
+ EI"(2)}/NB?D (43d)

Cov®, B)=—(O@—x)[E:Es+EI"(Q1/ND  (43e)
Cov(ko, P)=—O—x)(EL'@+EJ/ND (430
and

Ei=1+I"2)—-[['@))=nr%/6 (43g)
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E;=1+Q1+1/YT(1+2/p)—2(1+ 1/)I(1 + 1/B)

(43h)
E;=T@+1/p)+ '@+ /)~ (1+1/8)—T'(2)

(43D
E=Q1+1/BY[T(1+2/p)~T*1+1/p)]=E,~EZ

(43))
Es=1-T(2+1/B) (43k)
D=EE,—[E;+T"(QE;]* (431)

Note that the expected values of the second deri-
vatives of the log-likelihood function of the log-
Gumbel distribution are needed to get variances
and covariances of parameters in Eq. (43) and
they are given in Appendix B. Finally, the asymp-
totic variance of estimator of the quantile can be
obtained by substituting Eqs. (42) and (43) into
41) as
”

5= (DI (I\_g_:--xo)2 [E,+25 Y¥{—E,+Es

[14+T"@—TI'@)logS]+E[I"(2)— logS]1}

+ S E 4+ E[ 1+ T7(2) — 2I" (2)logS]
—2Es[1+7(2)~-T"(2)logS]1—E4[E;+2I7(2)
— 2logS+ 2logSE; ]+ E4(logS)*}] (44)

where S= —log(1—1/T).

4.3 Standard Error by Probability Weighted
Moments

The asymptotic distribution of the sample
PWMs can be written as*'¥

Bs By [Dw/N Do/N Deo/N
B\l ~~TVN| B;:|Dy/N Du/N Du/N 45)
B B, |Dw/N Dy/N Dn/N

where -~ reads “is asymptotically distributed as”
and TVN is an abbreviation for trivariate normal
distribution and Dij are derived in Appendix C
as

Do=0—x)1T1—-2/8)~T*1~1/p)] (46a)
Do:=[(8—x,)/2][2%°1(1—2/B) ~ (21 *~ I

(1—1/8)] (46b)
Doy = [(8— x,)2/2][{3¥° — 22*H(1/2)IT (1 - 2/B)
— 23V — 2VB)(1— 1/B)] (46¢c)

B34 HL4%-1993F 97

D= (0—x,)22*" [ H(1/2)[ (1 - 2/B)—~T%1—1/p)]

46d)
D1, =[(6—x,)/2][3**H(1/3)T(1 ~ 2/p)
—(2-6"—2"9)[%(1— 1/p)] (46e)
D= (0~ x.)*3**[H(2/3)T(1 ~ 2/8) ~ (1 — 1/)]
(460

where H(z) is a hypergeometric function. Note
that the asymptotic variance-covariances of the sa-
mple PWMs of the GEV distribution can be obtai-
ned from Eq. (46) by using the relationship of
parameters between the log-Gumbel and the GEV
distributions,

The asymptotic variance of the estimator of
quantile, X1 can be found by using the following
transformations

B, B B %
1}1”—) é1_) .élﬁ é‘“‘) 5(7
B, B B B

R b

where R:(Bﬁ;‘—ﬁo)/(?,ﬁl—ﬁo) in the first transfo-
rmation and b is given implicitly by (1—3v%)/(1—
2%)=R in the second transformation. Finally, the
asymptotic variance of iT is given by

-2/

Sp2= _S.ﬁ_[(sl/ﬁ— 1Var(x,)+ Var(@)

+ 2(S¥8— 1)Cov(k,, 8)+2(S¥8—1)
0—x, .-
¢ BZXO')—logS Cov(x,, B)

where

Var(f(o) = W()ZDO() + 2W0W1D01 -+ leDn -+ ZW(,W‘;Cl

H+ 2W1WBC2H + Wg;chz (483)
Var®)= T,"Dgy+2T,T:Dyy + 2Dy + 2T, T,C,H +
2T, TsC.H + T2CH? (48b)
Var(B)=CH? (48¢)

COV(;(O, é) = ‘NOTODO() + onlD(n + W1T0D01 + W]T]
Du+ WoTaclH + WITBCZH + W9T0C1
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H+ W, T,CH A+ W, T,CH? (48d)
Cov(ko P)=W.CiH-+W,CH+W,CH? (48¢)
Covi®, B)=T.C;H+ T\C;H+ TsCH? (489
and
Wo= %./9By= 218218~ 1) (492)
W1= gx./gB1= —2/(2¥*—1) (49b)
We=gx./dB= — (0~ x,)T(1 ~ 1/B)log(2)2"%/
[pa2ve—1y] (49¢)
To=90/9Bo=[1—2r(1—-1/8))/[(1 - 2V®)r
1-1/)] (49d)
T,=98/5B1= —2[1-T(1—~ 1/R)J/[(1— 2"l
(1—-1/8)] (49)
©®—x,)
Te= 69/6B=W {1—-2%y(1~1/)
+[1-TQ—1/8)llog(2)2"%} (490
C=[Dy(3VF~ 2V8) — 2D 3 (3¥8 — 1)+ 3Dx2
@ -11/M (49g)
Ci= [D01(3w - 21/8) - 2])11(31/ﬁ ~ 1)+ 3Dz
@8- 1HI/M (49h)
C2=[Dg(3"#—-2V8)— 2D ,(3V8 —~ 1) + 3Dy,
(25 -1DIYM (491)

Cs=[Cy(3"8—2"%)— 2C,(3Y*— 1) +3C,
@*#-1nI/M (49)

M= (8~ x)I(1-1/B)2"8—1) (49k)

Bz(l — 21/8)2

0= 02@) 31— 27— log@) 2% (1~ 3"%)

49D

b. Data Application

The annual flood data of the St. Mary’s River
at Stillwater, Nova: Scotia, Canada (1916-1975) are
used to illustrate the parameter estimates, quanti-
les and ‘confidence limits for the log-Gumbel dist-
ribution. The chi-square and Kolmogorov-Smirnov
goadness of fit tests show that the log-Gumbel
model is applicable to the St. Mary’s River. The
moment estimates (MOM) can be ohtained ' from
Eqs. (13), (15) and (16). The maximum likelihood

' —158—

Table 2. Parameter Estimates of the Log-Gumbel

Distribution
Parameter
Method
Xo 0 B
MOM —2952.481 344.7581 29.91265
ML ~-2471.739 345.1803 25.99029
PWM —2471.733 344.3607 25.64284

Table 3. The Quantiles and 95% Confidence Limits
for the Method of Moments

Return Nonexceedance Lower Quantile  Upper
Period Probability Limit R Limit
T q Xr
500 351.8698 385.4070 4189441
.800 4542984 514.3104 574.3223
10 900 5186129 602.3829 686.1528
20 950 580.3749 688.9659 797.5569
50 980 6613514 804.1778 947.0042
100 990 723.0700 892.8958 1062.7220
500 .998 869.6490 1106.0090 1342.3690

Table 4. The Quantiles and 85% Confidence Limits
for the Method of Maximum Likelihood

Return Nonexceedance Lower Quantile  Upper
Period Probability Limit R Limit
T q Xr
500 350.5921 385.1857 419.7792
800 460.0687 512.5317 564.9947
10 900 525.3752 599.9536 674.5320
20 950 578.3453 686.2164 794.0874
50 980 630.6382 801.4820 972.3257
100 990 657.1479  890.6065 1124.0650
500 998 674.3317 1105.9550 1537.5790

estimates (ML) based on the Newton-Raphson
method are obtained from Eq. (22). The probabi:
lity weighted moments estimates can be found
from Eqs. (25) through (27). These parameter es-
timates are given in Table 2. For given parameter
estimates, the quantiles and 95% confidence li-
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Table 5. The Quantiles and 95% Confidence Limits
for the Method of Probability Weighted Moments

Return Nonexceedance Lower Quantile  Upper
Period  Probability Limit Limit
T 4 XT

500 349.2581
800 460.2496

384.9001 420.5421
513.9969 567.7442

10 .900 526.8259 602.6641 678.5023
20 950 580.0417 690.1891 800.3365
50 980 630.5775 807.1919 983.8063
100 990 654.1571 897.6979 1141.2390
500 998 659.1465 1116.4670 1573.8880

mits, corresponding to return periods T=2, 5, 10,
20, 50, 100 and 500 of the log-Gumbel distribution
are evaluated in Table 3, 4 and 5, respectively.
The confidence limits of the PWM are close to
the ML and show the most tolerable for the large
return periods. The confidence limits of the MOM
show the most restricted limits for the large re-
turn periods.

As an alternative, the frequency factors can be
used to estimate the quantiles. For example, the
sample mean, standard deviation and skewness
coefficient of the St. Mary's River flood data are
412.145, 148.01, 1.3557, respectively. From Table
1, the value of the frequency factor for return
period 100 year is 3.2496 and then the quantile
for return period 100 year can be 412.145+ 3.2496
x148.01=893.118.

6. Conclusions

The log-Gumbel distribution in real space is de-
fined by transforming the conventional log-Gum-
bel distribution in log space. The parameter esti-
mation techniques, such as the methods of mo-
ment (MOM), maximum likelihood (ML) and pro-
bability weighted moments (PWM), are proposed
to estimate the parameters for this model. The
results of the parameter estimations are as fol-
lows: An iterative procedure such as the Newton-
Raphson is needed for each method to estimate
parameters for the three parameter log-Gumbel

HIZE F4YR- 19934 9H

model. For the two parameter log-Gumbel model,
the PWM method does not need any iterative
procedure. Hence, the PWM estimates of the pa-
rameters can be used as the initial values for the
other methods even for the three parameter
log-Gumbel model.

The asymptotic variances of the MOM, ML and
PWM quantile estimators for the three parameter
log-Gumbel distribution are derived as a function
of sample size, return period and: parameters as
a major contribution in this study. All formulae
do have very long and complicated forms. Howe-
ver, they can be determined numerically.

The confidence limits of the quantiles based
on the MOM, ML and PWM methods can be ob-
tained by using the corresponding asymptotic va-
riances. Model applications to the annual flood
data of the St. Mary’s River show that the confi-
dence limits for the MOM method are most rest-
ricted for the large return periods and the confi-
dence limits for the ML and PWM are close to
each other.

The derived asymptotic variances of the quan-
tile estimators are based on the three parameter
Weibull model. To apply the confidence limits of
the quantiles for the two parameter Weibull dist-
ribution, the derivation of the asymptotic varian-
ces for the two parameter model is very useful
for a future study because the parameter estima-
tion based on the three parameter Weibull model
may not be applicable for some real flood data.
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Appendix A Second Partial Derivatives of the
Log-Likelihood . Function of the Log-Gumbel Dist-
ribution.
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Appendix B Expected Values of the Second Pa-
rtial Derivatives of the Log-Likelihood Function
of the Log-Gumbel Distribution.
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+T'@2+1/p)—T1+ 1/p)—T'(2)]
(B5)
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where I'(w) is a gamma function with argument
w and I"(w) and I"(w) are the first and second
partial derivatives of a gamma function, respecti-
vely.

Appendix C Derivation of Elements Dij of Mat-
rix D for the Probability Weighted Moments Br

Let B,=EX{Fx)}"], r=0, 1,-, m, denote po-
pulation probability weighted moments (PWM)
and B, be the corresponding sample PWM. As
N goes to infinity, NY(B,—B,), r=0, 1,+-, m—1,
converges in distribution to the trivariate normal
distribution N(0, D)®. The elements of D; of mat-
rix D are given by

p— N 1
- oo T (B6)

D11:Jij+.]jl (Cl)
and

3= [ FoMFOIPGI-Fpldxdy (€2
x<y

Therefore
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Du=2[[ Feol1-Fy)ldxdy=(—x
(T~ 2/8)—T%(1-1/p)] (C3)

Dot = g _ [F+F)IFeo[1- F(y)ldxdy
=[(0=x)%/21[2PT (1 — 2/B) — (21* Vo — I?
1—1/B)] (€4

Dip= g [{FGO12+ [Fy)2IFGOL 1~ F(y) Jdxdy
=10~ x,)/2][13%%— 2¥H(1/2)IT(1— 2/B)
—2(3YP— 2V8)[¥(1— 1/B)] (C5)

Dy =2 j j FGF(y)F®I1— F(y)ldxdy
=@ =% 2 [H(1/2)I(1 - 2/B)~T*1— 1/B)]
(C6)

D= _[IF@PF+FoolF)]
FeOL 1 F(y) Jdxdy=[(0— x.)/2][3%*H
(1/3)1(1 2/B) — (2+ 67 — 2V9)%(1 — 1/B)]
{CD

Dp=2|| [FPF@IFF®1-F(y)ldxdy
= (O= X )32 [ H(2/3)I (1~ 2/8)— %1 — 1/B)]
(C9)

where H(z)=F(—2/B, —1/B; 1—1/B; —=2) is a hy-
pergeometric function.



