1. Introduction

We shall, for the most part, use the terminology of [2]. Graphs will be finite or infinite, but have no loops or multiple edges. For a vertex v of G, denote by $N_G(v)$ the set of vertices adjacent to v in G, and by $d_G(v)$ the cardinal number of $N_G(v)$. An x,y-path is a path joining vertices x and y in G, and in this case x and y are called the endvertices of the path. A path P is one-side infinite if it contains infinitely many vertices and $d_P(x) = 1$, for only one vertex x in P. In this case the vertex x is said to be the endvertex of P.

Let G be a plane graph and let C be a cycle in G. We denote by \overline{C} the subgraph of G consisted of the vertices and the edges lying on C and lying in the interior of C. A plane graph H is a circuit graph, following D.Barnette, if there exists a cycle C in a 3-connected plane graph such that $H = \overline{C}$. A circuit graph H is triangulated if all facial cycles of H, up to the outer cycle, are triangles.

A triangulation G is a countable locally finite plane graph, of which edges are contained in two non-separating triangles. If a representation of the graph G contains no vertex- or edge-accumulation points, then G is called a strong triangulation.

Whitney [8] proved every finite 4-connected maximal planar graph has a Hamiltonian cycle, and Tutte [7] and Thomassen [6] extended his result to all 4-connected planar graphs. In particular, Thomassen [6] showed that every 4-connected planar graph is Hamiltonian-connected, i.e., it has a Hamiltonian path connecting any two prescribed vertices. On the other hand, Dillencourt [3] observed the condition for internally maximal planar graphs to have a Hamiltonian cycle, and so he proved that every triangulated circuit graph without separating triangles, which contains at most three chordal edges, is Hamiltonian.
A simplified proof of Whitney's theorem and a linear algorithm for finding a Hamiltonian cycle in such a graph, can also be found in [1].

Nash-Williams ([4], see also in [5]) conjectured that this theorem is also true for all infinite 4-connected planar graphs, i.e., every infinite 4-connected planar graph has a one-side infinite Hamiltonian path.

In this paper Whitney's theorem will be extended to the infinite strong triangulations under the corresponding hypothesis, which is a part of Nash-williams' conjecture.

Namely, we prove the following theorem.

Theorem. Let G be a 4-connected infinite strong triangulation. Then there exists a one-side infinite Hamiltonian path in G originating from any prescribed vertex.

For the proof, important tools are the structure theorem (in section 2), Whitney’s theorem (in section 3) and the so-called König’s Unendlichkeitslemma, which is stated below:

Lemma (König). Let $\{P_1, P_2, P_3, \ldots\}$ be an infinite sequence of disjoint non-empty finite sets and R be a relation in $\mathcal{P} := \bigcup_{j=0}^{\infty} \mathcal{P}_j$, such that

$$\forall j \in \mathbb{N}, \forall P' \in \mathcal{P}_{j+1}, \exists P \in \mathcal{P}_j \text{ such that } (P, P') \in R.$$

Then there exists an infinite sequence of paths $\{P_1, P_2, P_3, \ldots\}$ such that $P_j \in \mathcal{P}_j$ and $(P_j, P_{j+1}) \in R$.

To investigate the structure of an infinite strong triangulation, we in addition have to define several important conditions.

Let C and C' be two disjoint cycles in an infinite strong triangulation G, where C lies in the interior of C'. A (C, C')-ring is a subgraph of G, which consists of not only C and C' but also the vertices and edges lying between C and C'. For a (C, C')-ring R, a bridge of R is either an edge of R joining C and C' (such a bridge is called a chordal edge, following Dillencourt [3]), or it is a connected component of $R - (C \cup C')$ together with all edges of R joining this component to $C \cup C'$. A (C, C')-ring R is *normal* if it satisfies the following properties:

1. C and C' are induced cycles.
2. $|V(B) \cap V(C')| \leq 2$, for any bridge B of R.

2. Structure of infinite strong triangulations

Lemma 1. Let C be an induced cycle of an infinite strong triangulation G. Then there exists a cycle C' such that the (C, C')-ring is normal.

Proof. First, we construct a cycle C' in G satisfying the hypothesis of this lemma.

Let $F := \{ J | J \text{ is a facial cycle in } G \text{ such that } V(J) \cap V(C) \neq \emptyset \}$ and let E be the set of all vertices of the cycles in F. Then we can see that $|E| < \infty$, since E contains only finite cycles and F is also finite. Furthermore, set $H := G[E]$, i.e. H is the induced subgraph of G containing all elements of E, and let C' be its outer cycle of H. We will now show the (C, C')-ring R is normal.

As an induced subgraph H of G, C' is an induced cycle. The assertion (3) is also obvious from the assumption. To show that C and C' are disjoint, we assume: $\exists x \in V(C) \cap V(C')$. Let y be a vertex on C' adjacent to x. Then, from the fact that all facial cycles in G are triangles, we can find a facial cycle $J = \{ x, y, z \}$ such that $yz \not\in E(C')$. But since the cycle must be contained in F (since $V(J) \cap V(C) \neq \emptyset$), it follows that $y, z \in E$. Hence we have $yz \in E(H)$, which contradicts our construction of C'.

It remains to be shown that $|V(B) \cap V(C')| \leq 2$ for every bridge B of R. Suppose there exists a bridge B such that $V(B) \cap V(C') = \{ y_1, \ldots, y_r \}$, $r \geq 3$. Since B is not a chordal edge and $V(B) \setminus V(C \cup C') \neq \emptyset$, it follows that there exists a y_1, y_r-path P in $B - (C \cup \{ y_2, \ldots, y_{r-1} \})$. Thus the facial cycle in R containing the edge y_ky_{k+1} ($k = 1, \ldots, r - 1$) is not contained in F, and therefore it holds that $y_k \not\in E$, $k = 2, \ldots, r - 1$, which also contradicts our construction of C'. \Box

Remark. We can prove that such a cycle C' is unique for a given induced cycle C.

Lemma 2. For any cycle C of an infinite strong triangulation, the induced subgraph \overline{C} is a triangulated circuit graph.
Proof. As every strong triangulation has a vertex-accumulation point free representation, \overline{C} is a finite subgraph, and hence it is a circuit graph. It is also obvious that \overline{C} is triangulated. □

PROPOSITION 3. Let G be a 4-connected strong triangulation. Let x_0 be a vertex of G and let C_0 be the cycle of G consisting of the vertices adjacent to x_0. Then there exists a sequence of induced cycles \{C_0,C_1,C_2,\ldots\} which holds the following properties:

1. The (C_{j-1},C_j)-ring is normal for all $j \in \mathbb{N}$.
2. $V(G) = V(\bigcup_{j=0}^{\infty} C_j)$.

Proof. It is clear that C_0 is an induced cycle by the fact of 4-connectedness of G. For $j \in \mathbb{N}$ the existence of C_j, related to C_{j-1}, satisfying the condition (1) follows from lemma 1. It remains only to show that the resulting cycles \{C_0,C_1,C_2,\ldots\} hold the condition (2).

Let $x \in V(G)$ be an arbitrary vertex. Since C_{j-1} lies in the interior of C_j ($j \in \mathbb{N}$), it follows that $x \in V(\overline{C}_{n_x})$, where n_x is a metric distance between x and x_0. Because of $V(\overline{C}_{n_x}) \subseteq V(\bigcup_{j=0}^{\infty} \overline{C}_j)$, we have $V(G) \subseteq V(\bigcup_{j=0}^{\infty} \overline{C}_j)$. Since it holds clearly that $V(G) \supseteq V(\bigcup_{j=0}^{\infty} \overline{C}_j)$, we can conclude $V(G) = V(\bigcup_{j=0}^{\infty} \overline{C}_j)$. □

REMARK. We can also prove that, for an arbitrary given vertex x_0, such a sequence of induced cycles with the condition (1)-(2) is unique.

Let C be an induced cycle in an infinite strong triangulation G. According to lemma 2 we can construct a cycle C' in G such that (C,C')-ring R is normal. We let F be the set of all chordal edges of R and let $BG(R) := (C \cup C') \cup F$. Then we have exactly $|F|$ facial cycles in $BG(R)$, up to the interior of C and the exterior of C'. For a facial cycle J of $BG(R)$ the induced subgraph \overline{J} of G is called a chamber of R. If $J = \overline{J}$, then the chamber J is empty. Clearly in the interior of a chamber lies at most one bridge of R since G is maximal planar.

Now we let G be 4-connected and let L be a nonempty chamber of R. Because of the conditions (2) and (3) in definition of normality, L must be one of following two types:

(i) $|V(L) \cap V(C')| = 1$,

(ii) $|V(L) \cap V(C')| = 2$.

In the former case we say that L is of type 1 and in the latter case that L is of type 2.
Hamiltonian Paths in Infinite Strong Triangulations

3. Whitney’s theorem and its extensions

The following notations are useful for the concept and proof of Whitney’s lemma and its corollaries.

A path \(P \) on \(C \) is \textit{wh-induced} if there exists no edge \(xy \in E(H) \setminus E(C) \), \(x, y \in V(P) \). For distinct vertices \(u, v \) (resp. \(u, v, w \)) on \(C \), we say that \((H, u, v) \) (resp. \((H, u, v, w) \)) satisfies condition \(W1 \) (resp. \(W2 \)) if the two \(u, v \)-paths (resp. the \(u, v, w \) and \(w, u \)-path) on \(C \) are wh-induced. Note that according to our definition \((H, u, v) \) satisfies \(W1 \) if and only if \((H, u, v, w) \) satisfies \(W2 \) for every vertex \(w \) on \(C \).

\[\text{LEMMA 4 (H.WHITNEY).} \]
Let \(H \) be a triangulated circuit graph without separating triangles and let \(C \) be its outer cycle. Finally let \(u \) and \(v \) be two distinct vertices on \(C \). If \((H, u, v) \) satisfies the condition \(W1 \) or if \((H, u, v, w) \) satisfies \(W2 \) for some vertex \(w \) on \(C \), then \(H \) contains a Hamiltonian \(u, v \)-path.

\[\text{Proof.} \] See in [8]. \[\square \]

\[\text{LEMMA 5.} \]
Let \(H \) be a 3-connected triangulated circuit graph without separating triangles and let \(C \) be its outer cycle with \(|V(C)| \geq 4 \).

(1) Let \(y \in V(C) \), and let \(u, v \) be the vertices adjacent to \(y \) on \(C \). Then there exists a Hamiltonian \(u, v \)-path in \(H - y \).

(2) Let \(yy' \in E(C) \) and let \(u \) (resp. \(v \)) be the vertex adjacent to \(y \) (resp. \(y' \)) on \(C \) such that \(u \neq y' \) and \(v \neq y \). Then there exists a Hamiltonian \(u, v \)-path in \(H - \{y, y'\} \).

\[\text{Proof.} \] (1) Set \(H' := H - y \). Then \(H' \) clearly is a triangulated circuit graph, because it is 2-connected. Let \(J \) be the outer cycle of \(H' \) and let \(J_1 \) and \(J_2 \) be the \(u, v \)-paths on \(J \) with \(J_1 = C - y \). Then the vertices of \(J_2 \) are identical to the vertices adjacent to \(y \) in \(H \) since \(H \) is triangulated. Note that \(J_1 \) is wh-induced. We will show \(J_2 \) also is wh-induced.

Suppose that there is an edge \(xx' \) in \(E(H) \setminus E(J_2) \) contained in the interior of \(J \). Then the vertices \(\{x, x', y\} \) separate \(H \) in two components, and hence \(H \) contains a separating triangle since \(xx', x'y \in E(H) \). So we have a contradiction to the hypothesis of this lemma.

Therefore \((H', u, v) \) satisfies \(W1 \), and so \(H' = H - y \) contains a Hamiltonian \(u, v \)-path, by the Whitney’s lemma.
(2) From $yy' \in V(C)$ and $|V(C)| \geq 4$, $H' := H - \{y, y'\}$ is 2-connected, and from this it is a triangulated circuit graph. Let J be the outer cycle of H', and let J_1 and J_2 be the u, v-paths on J such that $J_1 = C - \{y, y'\}$. Then we have $V(J_2) = N_G(\{y, y'\})$. We first note that J_1 is wh-induced. Let us consider the path J_2.

Since H' is triangulated we can easily verify that there exists a u, v-path J' such that $J' \subseteq V(J_1)$.

(i) $V(J'_2) \subseteq V(J_2)$,
(ii) J'_2 is induced path if $|V(C)| \geq 5$,
and $J'_2 \cup \{uv\}$ is induced cycle if $|V(C)| = 4$.

If $V(J'_2) = V(J_2)$, then J_2 is wh-induced, and so (H', u, v) satisfies W_1.

Now assume that $V(J'_2) \subset V(J_2)$. From the fact H contains no separating triangles, it is easy to see that there exists only one edge $e \in E(H)$ such that $e \in E(J'_2) \setminus E(J_2)$. Let w be the vertex of J_2 such that $\{y, y', w\}$ constitutes a facial cycle of H. Then, as in the proof of (1), it can be verified that the u, w- and v, w-path on J_2 are wh-induced. Therefore (H', u, v, w) satisfies W_2, and hence, in both cases, we can find a Hamiltonian u, v-path in $H' = H - \{y, y'\}$ by Whitney's lemma.

Lemma 6. Let H be a triangulated circuit graph without separating triangles and let C be its outer cycle. Let $u, v \in V(C), u \neq v$, and $e \in E(C)$ arbitrary (but $e \neq uv$ if $uv \in E(C)$). If (H, u, v) satisfies the condition W_1, then H has a Hamiltonian u, v-path which contains the edge e.

Proof. Let $e := xy \in E(C)$ and let w be a further vertex not in H. We construct a graph \tilde{H} as follows:

$$V(\tilde{H}) := V(H) \cup \{w\} \quad E(\tilde{H}) := E(H) \cup \{xw, yw\}.$$

Then \tilde{H} again is triangulated and (H, u, v, w) further satisfies W_2, and hence there exists a Hamiltonian u, v-path \tilde{P} in \tilde{H} by Whitney's lemma. Let $V(P) := V(\tilde{P}) \setminus \{w\}$ and $E(P) := E(\tilde{P}) \cup \{xy\} \setminus \{xw, yw\}$. Since \tilde{P} must contain the edge xw and yw, the u, v-path P is Hamiltonian in H containing the edge $e = xy$. □
4. Proof of the main theorem

Let R be a normal (C,C')-ring in a 4-connected infinite strong triangulation G. We choose an arbitrary vertex y_0 in $V(C')$. Let \bar{y} be the first vertex adjacent to y_0 on C', counterclockwise, and set $M := N_G(\bar{y}) \cap V(C)$. We note that M is non-empty since G is maximal planar. Let x_1 be the first vertex in M, also counterclockwise, and set $\{x_1, \ldots, x_k\} \subseteq V(C) \cap N_G(C')$. (i.e. for every $i \in \{1, \ldots, m\}$, there exists a vertex $y \in V(C')$ with $x_i y \in E(G)$, and conversely). Then for every $i \in \{1, \ldots, m\}$ and for each pair $\{x_i, x_{i+1}\}$ we can find exactly one chamber L_i such that $x_i, x_{i+1} \in V(L_i)$. Let x_0 be the vertex adjacent to x_m on C lying between x_m and x_0. (If $x_m x_1 \in E(C)$ we let $x_0 = x_1$). We will prove there exists a Hamiltonian x_0, y_0-path in $R - (V(C') \setminus \{y_0\})$.

(1) The chamber $L_i (i = 1, \ldots, m - 1)$.

Case 1: L_i is of type 1:

Let $y \in V(L_i) \cap V(C')$. If L_i is empty we let $P_i := \{x_i, x_{i+1}\}$. Otherwise L_i clearly is a 3-connected triangulated circuit graph without separating triangles. Since x_i and x_{i+1} are adjacent to y on the outer cycle of L_i we can find a Hamiltonian x_i, x_{i+1}-path P_i in $L_i - y$ by lemma 5 (1).

Case 2: L_i is of type 2:

Let $y, y' \in V(L_i) \cap V(C')$. Since R is normal, yy' must be an edge of L_i. Analogously it can be verified that L_i satisfies the hypothesis of (2) in lemma 5. Therefore we can also find a Hamiltonian x_i, x_{i+1}-path P_i in $L_i - \{y, y'\}$.

(2) The chamber L_m.

Let J be the outer cycle of L_m. Because of the choice of x_1, it is clear that $y_0 x_m, x_1 y \in E(G)$. We will construct a Hamiltonian x_1, y_0-path \bar{P} in L_m (resp. $L_m - \bar{y}$) containing the edge $x_m x_0$ if L_m is of type 1 (resp. type 2), where the vertex x_0 is defined at the beginning of this section.

Case 1: L_m is of type 1:

Let $V(L_m) \cap V(C') := \{y_0\}$. If L_m is empty, then we let $\bar{P} = L_m - \{x_1 y_0\}$. Otherwise L_m is 3-connected and $|V(J)| \geq 4$. Because $x_1 y_0 \neq x_m x_0$, L_m satisfies the hypothesis of lemma 5 (corresponding
to the vertices x_1, y_0 and the edge $x_m x_0$). Therefore there exists a Hamiltonian x_1, y_0-path \bar{P} in L_m containing the edge $x_m x_0$.

Case 2: L_m is of type 2:

Let $V(L_m) \cap V(C') =: \{y_0, \bar{y}\}$. In this case L_m is not empty, so it is 3-connected. As in the proof of lemma 5, $(L_m - \bar{y}, x_1, y_0)$ satisfies the condition $W1$, so, by Whitney’s lemma, there exists a Hamiltonian x_1, y_0-path \bar{P} in $L_m - \bar{y}$ containing the edge $x_m x_0$.

In each case we let P_0 be the x_0, x_1-path of \bar{P} and P_m be the x_1, x_m-path of \bar{P}. Then $V(P_0) \cup V(P_m) = V(\bar{P})$ and $E(P_0) \cup E(P_m) = E(\bar{P}) \setminus \{x_m x_0\}$ since \bar{P} contains the edge $x_m x_0$.

Now we sumerize all chambers $L_1, \ldots, L_{m-1}, L_m$. For a given normal (C, C')-ring R in G and for an arbitrary given vertex y_0 on C', the chambers L_1, \ldots, L_m are fixed. From (1) and (2) we have $m + 1$ paths P_0, P_1, \ldots, P_m in R, such that:

1. for $i = 0, \ldots, m - 1$ the endvertices of P_i are x_i and x_{i+1}, and those of P_m are x_m and y_0.
2. $V(P_i) = V(L_i - C')$ for $i = 0, \ldots, m - 1$, and $V(P_0) \cup V(P_m) = V(L_m)$.

Let $P := \bigcup_{i=0}^{m} P_i$. Then P is a x_0, y_0-path in R which covers all vertices of $(R - C') \cup \{y_0\}$. Thus we have:

Proposition 7. Let R be a normal (C, C')-ring in a 4-connected infinite strong triangulation and let x_0, y_0 be the vertices defined at the beginning of this section. Then there exists a x_0, y_0-path in R which covers all vertices of $(R - C') \cup \{y_0\}$. □

We can now prove the main theorem of this paper with the aid of König’s lemma.

Let G be a 4-connected infinite strong triangulation and x_0 an arbitrary given vertex of G. We let C_0 be the induced cycle of G consisting of the vertices adjacent to x_0. Then, by proposition 3, we have a sequence of induced cycles $\{C_0, C_1, C_2, \ldots\}$ satisfying the same conditions (1)–(2) in the proposition.

For $j \in \mathbb{N}$, let R_j be the (C_{j-1}, C_j)-ring and let P_j be the set of all
paths in R_j such that:

$$ P \in \mathcal{P}_j \quad \text{if and only if} \quad \begin{cases}
i P \text{ is a } x, y\text{-path in } R_j \\ \text{with } x \in V(C_{j-1}) \text{ and } y \in V(C_j), \\
i E(P) = E(R_j - C_j) \cup \{y\}. \end{cases} $$

We will further define a relation $\mathcal{R} \subseteq \mathcal{P} \times \mathcal{P}$, where $\mathcal{P} := \bigcup_{j=1}^{\infty} \mathcal{P}_j$:

$$(P, P') \in \mathcal{R} \quad \text{if and only if} \quad \begin{cases}
i \exists j \in \mathbb{N}; \ P \in \mathcal{P}_j \text{ and } P' \in \mathcal{P}_{j+1}, \\
i P \text{ and } P' \text{ have a common endvertex}. \end{cases}$$

We will show that the relation \mathcal{R} holds the hypothesis of König’s lemma. Clearly we have $\mathcal{P}_j \neq \emptyset$ and $|\mathcal{P}_j| < \infty$ for all $j \in \mathbb{N}$. For any $j \in \mathbb{N}$, let $P' \in \mathcal{P}_{j+1}$ be an arbitrary element. Then, by the definition of P', one of its endvertices of P', say x', is contained in C_j and the another in C_{j+1}. By proposition 7, we can find a x, x'-path P in R_j with $x \in V(C_{j-1})$ and $V(P) = V(R_j - C_j) \cup \{x'\}$, and from this we have $P \in \mathcal{P}_j$ and $(P, P') \in \mathcal{R}$. Thus, by König’s lemma, there exists an infinite sequence of paths $\{P_1, P_2, \ldots\}$ such that $P_j \in \mathcal{P}_j$ and $(P_j, P_{j+1}) \in \mathcal{R}$ for all $j \in \mathbb{N}$. We now let x_1 be the endvertex of P_1 lying on C_0 and set $P_0 := \{x_0x_1\}$. Then $P := \bigcup_{j=0}^{\infty} P_j$ clearly is a one-side infinite path in G. Because of $V(G) = \{x_0\} \cup V(\bigcup_{j=1}^{\infty} P_j) = V(\bigcup_{j=0}^{\infty} C_j)$ by proposition 3, P is a Hamiltonian path in G originating from the endvertex x_0, and this completes the proof of the main theorem.

References

3. M. B. Dillencourt, Hamiltonian cycles in planar triangulations with no separating triangles, J. Graph Th. 14 (1990), 31-49.

6. —, *A theorem on paths in planar graphs*, J. Graph Th. 7 (1983), 137–160.

Department of Mathematics
Han-Shin University
Osan-shi 447-791, Korea