SURFACES WITH SIMPLE GEODESICS

YOUNG HO KIM

1. Introduction

Geodesics of a submanifold in Euclidean space play an important role in characterizing the submanifold. For example, if all the geodesics of submanifold are plane curves in the ambient Euclidean space, it is isometric to n-plane or a compact rank one symmetric space ([8] and [10]). Such a submanifold is called a submanifold with planar geodesics. A submanifold is called helical if all the geodesics have the same constant curvatures. K. Sakamoto [10] and other geometers studied helical submanifolds.

In 1981, B.-Y. Chen and P. Verheyen [3] introduced the notion of submanifolds with geodesic normal sections and classified surfaces with geodesic normal sections in a Euclidean space. They also proved that helical submanifolds have geodesic normal sections if the ambient manifold is Euclidean. Later, Verheyen [12] proved that submanifold with geodesic normal sections in Euclidean space is helical. Thus, the concept of submanifolds with geodesic normal sections coincides with that of helical submanifold if the ambient space is Euclidean.

In 1982, D. Ferus and S. Schirrmacher [4] studied the surface in Euclidean 4-space $\mathbb{E}^4$ with simple geodesics which are geodesics of the surface as W-curves in $\mathbb{E}^4$. A W-curve in a Euclidean space means all Frenet curvatures of the curve are constant along the curve. They classified surfaces in 4-dimensional Euclidean space $\mathbb{E}^4$ in which all geodesics are W-curves. More precisely, we give the definition of W-curve ([4]): a regular curve $c : I \subset \mathbb{R} \rightarrow \mathbb{E}^m$ is called a W-curve of rank d if for all $t \in I$, $c'(t) \wedge c''(t) \wedge \cdots \wedge c^{(d)}(t) \neq 0$, $c'(t) \wedge c''(t) \wedge \cdots \wedge c^{(d)}(t) \wedge c^{(d+1)}(t) = 0$ and the Frenet curvatures $\kappa_1, \kappa_2, \cdots, \kappa_{d-1}$.

Received June 1, 1992.

1980 Mathematical Subject Classification (1985 Revision): Primary 53C40.

This research was partially supported by KOSEF, 1990.
I → \mathbb{R}_+ are constant. By the fundamental theorem of curves, if a W-curve is of even rank, then there are positive constants \(a_1, a_2, \ldots, a_k\), unique up to order, corresponding positive constants \(r_1, r_2, \ldots, r_k\) and orthonormal vectors \(e_1, e_2, \ldots, e_{2k} \in E^m\) such that

\[
c(t) = \text{const.} + \sum_{i=1}^{k} r_i (e_{2i-1} \cos a_i t + e_{2i} \sin a_i t).
\]

The rank of unbounded W-curve is odd and the equation for such a curve contains an additional linear term in \(t\).

We now extend our definition of W-curve in a Riemannian manifold \(\tilde{M}\). Let \(\tilde{\nabla}\) be the Riemannian connection of \(\tilde{M}\). A regular curve \(c : I \rightarrow \tilde{M}\) is called a W-curve of rank \(d\) in \(\tilde{M}\) if for all \(t \in I\), \(c'(t) \wedge \tilde{\nabla}_{c'(t)} c'(t) \wedge \cdots \wedge \tilde{\nabla}^{d-1}_{c'(t)} c'(t) \neq 0\) and the Frenet curvatures \(\kappa_1, \kappa_2, \ldots, \kappa_{d-1}\) are constant along \(c\). Throughout this paper, a simple geodesic of surface means a W-curve regarded as a curve in the ambient manifold. In the present paper, we prove

**Theorem A.** Let \(M\) be a compact connected surface in 5-dimensional Euclidean space \(E^5\). Then \(M\) has simple geodesics if and only if \(M\) is a standard torus \(S^1(a) \times S^1(b) \subset E^4\), a 2-sphere \(S^2(r) \subset E^3\) or a Veronese surface which is minimal in \(S^4(r) \subset E^5\).

**Theorem B.** Let \(M\) be a complete connected surface in 4-sphere \(S^4(r)\). Then \(M\) has simple geodesics if and only if \(M\) is a 2-sphere, a Veronese surface or a standard torus \(S^1(a) \times S^1(b)\), \(a^2 + b^2 = r^2\).

### 2. Proof of Theorem A

The sufficiency is clear. We prove the necessity.

**Case 1.** There exists a non-periodic geodesic \(\gamma\) of \(M\).

The exact same proof for the case 1 of Theorem 2 of [4] is applied to prove that \(M\) is isometric to a standard torus \(S^1(a) \times S^1(b)\). We now give the sketch of the proof. Let \(\gamma : R \rightarrow M\) be a non-periodic geodesic. Then, \(x \circ \gamma\) is also non-periodic, where \(x : M \rightarrow E^5\) is an isometric immersion. And \(x \circ \gamma\) must be of rank 4. Since \(x \circ \gamma\) is not periodic, \((x \circ \gamma)(R)\) is a torus \(S^1(a) \times S^1(b)\) in \(x(M)\). Since \(x\) is an immersion, there exists an non-empty open subset \(U\) of \(M\) such that
$x(U) \subset S^1(a) \times S^1(b)$. Then images of geodesics in $U$ are geodesics in $S^1(a) \times S^1(b)$. Since $M$ is compact, any point of $M$ and a point of $U$ can be joined with a geodesic. On the other hand, every geodesic of $S^1(a) \times S^1(b)$ is a W-curve. By the uniqueness of geodesics with initial Frenet data, $x(M) \subset S^1(a) \times S^1(b)$. Thus, $M$ is isometric to a standard torus $S^1(a) \times S^1(b)$.

Case 2. All the geodesics of $M$ are periodic.

Case 2-1. Every geodesic through $p$ is of rank 2 for every point $p$ of $M$. In this case, $M$ has planar geodesics. By classification Theorem ([8],[9]), $M$ is a sphere $S^2(r)$ or a Veronese surface.

Case 2-2. There exists a geodesic, of rank 4 through $p$ for some point $p$ of $M$. We identify with $x_0$,

\[ x(s, \theta) = C(\theta) + r_1(\theta) \cos \alpha(\theta) s f_1(\theta) + r_1(\theta) \sin \alpha(\theta) s f_2(\theta) + r_2(\theta) \cos \beta(\theta) s f_3(\theta) + r_2(\theta) \sin \beta(\theta) s f_4(\theta), \]

where $x(0, \theta) = p, C(\theta)$ is a vector valued function, $r_1(\theta)$ and $r_2(\theta)$ are nonnegative valued functions, $\alpha(\theta)$ and $\beta(\theta)$ are positive valued functions and $f_1(\theta), f_2(\theta), f_3(\theta)$ and $f_4(\theta)$ are orthonormal vectors in $E^5$. For some $\theta_0 \in (0,2\pi), x(s, \theta_0) = \gamma(s)$. Then, $r_1(\theta) > 0$ and $r_2(\theta) > 0$ for $\theta \in I$, where $I$ is an open interval containing $\theta_0$. Let $\kappa_1, \kappa_2$ and $\kappa_3$ be the first, second and third Frenet curvatures of $x(s, \theta)$ respectively for $\theta \in I$. Then we have the following relations:

\[ \kappa_1(\theta)^2 + \kappa_2(\theta)^2 + \kappa_3(\theta)^2 = \alpha(\theta)^2 + \beta(\theta)^2, \]

\[ \kappa_1(\theta)^2 \kappa_3(\theta)^2 = \alpha(\theta)^2 \beta(\theta)^2 \]

for every $\theta \in I$. Since all the geodesics are periodic, they have a common period $L$ (See Besse [1], p. 182). Since $\alpha(\theta)$ and $\beta(\theta)$ are integer multiples of $2\pi/L$, they are constant on $I$. Set $\alpha = \alpha(\theta)$ and $\beta = \beta(\theta)$.
\[ x(s, \theta) = x(0, \theta) + r_1(\theta)(\cos \alpha s - 1)f_1(\theta) + r_1(\theta)\sin \alpha f_2(\theta) \\
+ r_2(\theta)(\cos \beta s - 1)f_3(\theta) + r_2(\theta)\sin \beta f_4(\theta) \]

for \( \theta \in I \). Then we have

\[(3) \quad x_*(\partial/\partial s) = -\alpha r_1(\theta)\sin \alpha f_1(\theta) + \alpha r_1(\theta)\cos \alpha f_2(\theta) \\
- \beta r_2(\theta)\sin \beta f_3(\theta) + \beta r_2(\theta)\cos \beta f_4(\theta),\]

\[(4) \quad x_*(\partial/\partial \theta) = r_1'(\theta)(\cos \alpha s - 1)f_1(\theta) + r_1(\theta)(\cos \alpha s - 1)f_1'(\theta) \\
+ r_1'(\theta)\sin \alpha f_2(\theta) + r_1(\theta)\sin \alpha f_2'(\theta) \\
+ r_2'(\theta)(\cos \beta s - 1)f_3(\theta) + r_2(\theta)(\cos \beta s - 1)f_3'(\theta) \\
+ r_2'(\theta)\sin \beta f_4(\theta) + r_2(\theta)\sin \beta f_4'(\theta),\]

\[(5) \quad \nabla_{x_*(\partial/\partial s)}x_*(\partial/\partial s) = -\alpha^2 r_1(\theta)\cos \alpha f_1(\theta) - \alpha^2 r_1(\theta)\sin \alpha f_2(\theta) \\
- \beta^2 r_2(\theta)\cos \beta f_3(\theta) - \beta^2 r_2(\theta)\sin \beta f_4(\theta),\]

\[(6) \quad \nabla_{x_*(\partial/\partial s)}x_*(\partial/\partial \theta) = -\alpha r_1'(\theta)\sin \alpha f_1(\theta) - \alpha r_1(\theta)\sin \alpha f_1'(\theta) \\
+ \alpha r_1'(\theta)\cos \alpha f_2(\theta) + \alpha r_1(\theta)\cos \alpha f_2'(\theta) \\
- \beta r_2'(\theta)\sin \beta f_3(\theta) - \beta r_2(\theta)\sin \beta f_3'(\theta) \\
+ \beta r_2'(\theta)\cos \beta f_4(\theta) + \beta r_2(\theta)\cos \beta f_4'(\theta),\]

where \( \nabla \) is the Riemann connection in \( E^5 \). From the Gauss lemma, we get \( \langle x_*(\partial/\partial s), x_*(\partial/\partial \theta) \rangle = 0 \), where \( \langle , \rangle \) is the scalar product in \( E^5 \).
Surfaces with simple geodesics

So, we get

\begin{align*}
(7) \quad &\alpha r_1^2(f_1'(\theta), f_2(\theta)) + \beta r_2^2(\theta)(f_3'(\theta), f_4(\theta)) \\
&+ \alpha r_1(\theta)(r_1'(\theta) + r_2(\theta)(f_1(\theta), f_3'(\theta))) \sin \alpha s \\
&+ \alpha r_1(\theta)(r_1(\theta)(f_1(\theta), f_2(\theta)) - r_2(\theta)(f_2(\theta), f_3'(\theta))) \cos \alpha s \\
&+ \beta r_2(\theta)(r_2'(\theta) + r_1(\theta)(f_1'(\theta), f_3(\theta))) \sin \beta s \\
&+ \beta r_2(\theta)(r_1(\theta)(f_1(\theta), f_3'(\theta)) - r_2(\theta)(f_1(\theta), f_3'(\theta))) \cos \beta s \\
&+ \frac{(\alpha - \beta)}{2} r_1(\theta)r_2(\theta)\{(f_1'(\theta), f_3(\theta)) + (f_2(\theta), f_3'(\theta))\} \sin(\alpha + \beta)s \\
&+ \frac{(\alpha + \beta)}{2} r_1(\theta)r_2(\theta)\{(f_3'(\theta), f_3(\theta)) - (f_2(\theta), f_3'(\theta))\} \sin(\alpha - \beta)s \\
&+ \frac{(\alpha - \beta)}{2} r_1(\theta)r_2(\theta)\{(f_2(\theta), f_4'(\theta)) - (f_1'(\theta), f_4(\theta))\} \cos(\alpha + \beta)s \\
&+ \frac{(\alpha + \beta)}{2} r_1(\theta)r_2(\theta)\{(f_2(\theta), f_4'(\theta)) + (f_1'(\theta), f_4(\theta))\} \cos(\alpha - \beta)s \\
&= 0 \quad \text{for all} \quad \theta \in I.
\end{align*}

We now prove $\alpha \neq \beta, \alpha \neq 2\beta$ and $\beta \neq 2\alpha$.

Suppose that $\alpha = \beta$. Since $(x_*(\partial/\partial s), x_*(\partial/\partial s)) = 1$, we have

$$1 = \alpha^2 r_1^2(\theta) + \beta^2 r_2^2(\theta) = \alpha^2(r_1^2(\theta) + r_2^2(\theta)).$$

On the other hand, we have

$$\kappa_2^2(\theta) = \|\nabla_{x_*(\partial/\partial s)}x_*(\partial/\partial s)\|^2 = \alpha^4(r_1^2(\theta) + r_2^2(\theta)).$$

Therefore, we get $\kappa_1(\theta) = \alpha$. By means of (1) and (2), we see that $\kappa_2(\theta) = 0$. It contradicts that $x(s, \theta)$ is of rank 4 for every $\theta \in I$. Thus, $\alpha \neq \beta$ on $I$. We now suppose that $\beta = 2\alpha$. We obtain the following from (7): For every $\theta \in I$,

(8) \quad $r_1^2(\theta)(f_1'(\theta), f_2(\theta)) + 2r_2^2(\theta)(f_3'(\theta), f_4(\theta)) = 0,$

(9) \quad $(r_1'(\theta) + r_2(\theta)(f_1(\theta), f_3'(\theta)))$

$$- \frac{3}{2} r_2(\theta)(f_3'(\theta), f_3(\theta)) - (f_2(\theta), f_3'(\theta)) = 0,$$
(10) \[ (r_1(\theta)(\langle f_1(\theta), f'_1(\theta) \rangle) - r_2(\theta)(\langle f_2(\theta), f'_2(\theta) \rangle) + \frac{3}{2} r_2(\theta)(\langle f_2(\theta), f'_3(\theta) \rangle) - \langle f'_1(\theta), f_4(\theta) \rangle = 0, \]

(11) \[ r'_2(\theta) + r'_1(\theta)(f'_1(\theta), f_3(\theta)) = 0, \]

(12) \[ r_1(\theta)(\langle f_1(\theta), f'_4(\theta) \rangle) - r_2(\theta)(\langle f_4(\theta), f'_3(\theta) \rangle = 0, \]

(13) \[ \langle f'_1(\theta), f_3(\theta) \rangle + \langle f'_2(\theta), f'_4(\theta) \rangle = 0, \]

(14) \[ \langle f_2(\theta), f'_3(\theta) \rangle - \langle f'_1(\theta), f_4(\theta) \rangle = 0. \]

We now compute \( \langle \tilde{\nabla}_{x_*(\partial/\partial s)} x_*(\partial/\partial s), \tilde{\nabla}_{x_*(\partial/\partial s)} x_*(\partial/\partial \theta) \rangle \) on \( I \). From (6) and (7), we get after a long computation:

\[
\langle \tilde{\nabla}_{x_*(\partial/\partial s)} x_*(\partial/\partial s), \tilde{\nabla}_{x_*(\partial/\partial s)} x_*(\partial/\partial \theta) \rangle \\
= \alpha^3 r_1^2(\theta)(f'_1(\theta), f_2(\theta)) - 8\alpha^3 r_2^2(\theta)(f_3(\theta), f'_4(\theta)) \\
+ 2\alpha^3 r_1(\theta)r_2(\theta)(-\cos \alpha s + \sin \alpha s \cos 2\alpha s)(f'_1(\theta), f_3(\theta)) \\
- 2\alpha^3 r_1(\theta)r_2(\theta)(\cos \alpha s + \sin \alpha s \sin 2\alpha s)(f_1(\theta), f'_4(\theta)) \\
+ 2\alpha^3 r_1(\theta)r_2(\theta)(\cos \alpha s + \cos \alpha s \cos 2\alpha s)(f_2(\theta), f'_3(\theta)) \\
+ 2\alpha^3 r_1(\theta)r_2(\theta)(\sin \alpha s + \sin 2\alpha s \cos \alpha s)(f_2(\theta), f'_4(\theta)).
\]

Making use of (13) and (14), it is reduced to

\[
\langle \tilde{\nabla}_{x_*(\partial/\partial s)} x_*(\partial/\partial s), \tilde{\nabla}_{x_*(\partial/\partial s)} x_*(\partial/\partial \theta) \rangle \\
= \alpha^3 r_1^2(\theta)(f'_1(\theta), f_2(\theta)) - 8\alpha^3 r_2^2(\theta)(f_3(\theta), f'_4(\theta)) \\
- 6\alpha^3 r_1(\theta)r_2(\theta) \sin \alpha s(f_3(\theta), f'_1(\theta)) \\
+ 6\alpha^3 r_1(\theta)r_2(\theta) \cos \alpha s(f_2(\theta), f'_3(\theta)).
\]

Differentiating the last equation covariantly along \( x(s, \theta) \) for all \( \theta \in I \), we obtain

(15) \[ x_*(\partial/\partial s)\langle \tilde{\nabla}_{x_*(\partial/\partial s)} x_*(\partial/\partial s), \tilde{\nabla}_{x_*(\partial/\partial s)} x_*(\partial/\partial \theta) \rangle \\
= -6\alpha^4 r_1(\theta)r_2(\theta) \cos \alpha s(f_3(\theta), f'_1(\theta)) \\
- 6\alpha^4 r_1(\theta)r_2(\theta) \sin \alpha s(f_2(\theta), f'_3(\theta)).\]
We now identify $x_*(\partial/\partial s)$ with $\partial/\partial s$ and $x_*(\partial/\partial \theta)$ with $\partial/\partial \theta$ and denote them by $T$ and $Q$ respectively. The second fundamental form $h$ on $M$ is defined by $\tilde{\nabla}_X Y = \nabla_X Y + h(X,Y)$, where $X$ and $Y$ are vector fields on $M$, $\nabla$ the Riemannian connection on $M$. Let $\tilde{\nabla}$ be the operator of covariant differentiation of $h$ defined on $T(M) \oplus T^\perp(M)$ as follows:

$$(\tilde{\nabla}_X h)(Y, Z) = \nabla_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z),$$

where $T(M)$ denotes the tangent bundle, $T^\perp(M)$ the normal bundle of $M$, $X$, $Y$ and $Z$ vector fields on $M$ and $\nabla^\perp$ the normal connection defined on the normal bundle $T^\perp(M)$. We denote $(\tilde{\nabla}_X h)(Y, Z)$ by $(\tilde{\nabla} h)(X, Y, Z)$. Then we have

$$(16) \quad T(\tilde{\nabla}_T T, \tilde{\nabla}_T Q) = T(h(T, T), h(T, Q))$$

$$= ((\tilde{\nabla} h)(T, T, T), h(T, Q)) + \langle h(T, T), (\tilde{\nabla} h)(T, T, Q) \rangle$$

$$- h(T, \nabla_T Q))$$

$$= ((\tilde{\nabla} h)(T, T, T), h(T, Q)) + \langle h(T, T), (\tilde{\nabla} h)(T, T, Q) \rangle$$

$$- \langle h(T, T), h(T, \nabla_Q T) \rangle.$$

Together with (15) and (16), we get $T(\tilde{\nabla}_T T, \tilde{\nabla}_T Q) \rightarrow 0$ as $s \rightarrow 0$ and hence $\langle f_3(\theta), f_1'(\theta) \rangle = 0$ on $I$. Combining (9), (11) and (12), we can conclude that $r_1(\theta)$ and $r_2(\theta)$ are constant on $I$. Therefore, all the curvatures $\kappa_1, \kappa_2$ and $\kappa_3$ are constant on for all $\theta \in I$. Let $\Theta_p = \{ \theta \in I | x(s, \theta) \text{ is of rank 4} \}$. Then $\Theta_p$ is a non-empty open subset of $(0, 2\pi)$. By the continuity of $\kappa'_i s$, $\Theta_p$ is closed. Thus $\Theta_p = (0, 2\pi)$. Hence all the geodesics through $p$ is of rank 4 and have the same constant Frenet curvatures. Let $q$ be any point of $M$. Since $M$ is compact, there exists a geodesic joining $p$ and $q$. By the same argument as above, we see that $\Theta_q = (0, 2\pi)$.

Therefore we can conclude that $M$ is helical in $E^5$. By [10], $M$ is isometric to a standard sphere or a Veronese surface. It would be a contradiction. Thus $\beta \neq 2\alpha$. Similarly, we can prove that $\alpha \neq 2\beta$. Therefore, the functions $1, \sin \alpha s, \cos \alpha s, \sin \beta s, \cos \beta s, \sin(\alpha \pm \beta)s$ and $\cos(\alpha \pm \beta)s$ in (7) are linearly independent. By solving the system of
equations formed by the coefficients of them, we have \( r_1'(\theta) = r_2'(\theta) = 0 \) on \( I \), i.e., \( r_1(\theta) \) and \( r_2(\theta) \) are constant on \( I \). Therefore, the curvatures \( \kappa_1, \kappa_2 \) and \( \kappa_3 \) are constant for all \( \theta \in I \). The same argument as we did above implies that \( M \) is helical in \( E^5 \). Thereby Case 2-2 cannot occur. This completes the proof of Theorem A.

3. Proof of Theorem B

Suppose that \( M \) has simple geodesics in \( S^4(r) \). Let \( x : M \rightarrow S^4(r) \) be an isometric immersion. Without loss of generality we may assume that \( r = 1 \). Let \( i : S^4(1) \rightarrow E^5 \) be the canonical inclusion of \( S^4(1) \) into \( E^5 \) whose origin coincides with the center of \( S^4(1) \). Let \( \gamma \) be a geodesic of \( M \) in \( S^4(1) \) and let \( \lambda_1, \lambda_2, \lambda_3 \) and \( \kappa_1, \kappa_2, \kappa_3 \) be the curvatures of \( x \circ \gamma \) and \( i \circ x \circ \gamma \) respectively. Then we obtain (cf. [11]):

\[
\kappa_1^2 + \kappa_1^2 \kappa_2^2 = \lambda_1^2 \lambda_2^2, \quad \kappa_2^2 + \kappa_3^2 = \lambda_2^2 + \lambda_3^2.
\]

Therefore, \( M \) has simple geodesics in \( E^5 \). According to Theorem A, \( M \) is a 2-sphere or a Veronese surface or a standard torus \( S^1(a) \times S^1(b), a^2 + b^2 = 1 \) since \( M \) is a surface of \( S^4(1) \). The converse is obvious. This completes the proof of Theorem B.

References


Department of Mathematics
Kyungpook National University
Teachers College
Taegu 702-701, Korea