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AN EXTREME POSITIVE LINEAR OPERATOR

ON M n WHICH MAPS AN EXTREME

POINT TO A NON-EXTREME POINT

BVUNG Soo MOON

1. Introduction

We denote M n for the set of all n x n complex matrices and En
for the Hermitian part of M n. Thus, En is the real ordered space of all
n x n Hermitian matrices with the positive cone consisting of all elements
having nonnegative eigenvalues. A linear operator T from En to Em is
positive if T(P) ~ 0 whenever P ~ 0, and T is extreme if S = AT for
some A ~ 0 whenever 0 ::; S ::; T.

A linear operator which maps every extreme point xx* E En to either
o or yy* E Em will be called a 'simple' extreme linear operator.

It is proved in [1] and [2] that a positive linear operator on E 2 or from
E2 to E3 is extreme if and only if it is a simple extreme linear operator.
In [3], it is proved that every positive linear operator on E2 is a sum of
simple extreme positive linear operators.

Choi and Lam [4 ; Theorem 4.4] gave an example of a non-square
extreme semidefinite biquadratic real polynomials. In the context of
positive linear operators on M n , 'simple' extreme operators correpond
to (absolute) squares of bilinear homogeneous polynomials when we con
sider z*T(xx*)z be the equivalent semidefinite form corresponding to a
positive linear operator Ton M n •

In this paper, we give an example of a non-square extreme semidefi
nite biquadratic in complex setting, i.e. a positive semidefinite complex
polynomial which is not a sum of absolute squares of homogeneous bi
linear forms. In our terms, it will be an example of an extreme positive
linear operator which maps an extreme point of the positive cone in M n

to a non~extreme point in M n .
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We write

[
r~

xx· =

for x E Ca where 8 = fh - 81 , and let

T(xx.) = [rl 1 r1 r3(e1COS 82 + e2sin ( 2) + ir2r3(e2cos e+ e 1sin8]
rl +r~

where I is the identity in~, then it is routine to verify that T ~ o. The
linear operator defined above will always be denoted by T and all the
linear operators we consider in this paper will be assumed to be from Ea
to Ea.

Note that there is a natural extension of every positive linear operator
on En to a positive linear operator on Mn.

Since T(eael') = 12 where 12 is the identity in ~,T maps an extreme
point to a non-extreme point. We have to prove that T is extreme. But,
first we prove that T is not the sum of simple extreme positive linear
operators, which gives us some assurance that T may be extreme.

2. T is not a Sum of Simple Extreme Operators

In the following, we will use Eii for eieT,Ekl for (ekeT + eler), and
Ekl for iekeT - ieler, k =/: 1.

LEMMA 2.1. If S is a linear operator with 0 :$ S :$ T, then S(E13),

S(E13),S(~3),S(Eza) are all of the form [0 ~] forsomeaE c 2
•

Proof. Note that we must have SeEn) = tE3a , S(E3a) = [P ~] for

somet~t); 0:5 P"E.Ei ~ Let··

S(Et3 ) = [A ~], S(Et3 ) = [B :],

then

~ r~i8] = [r2P +r(Acos8 + Bsin8) r(acos8 + bsi~8) ] > o.
2 t + r(Acos8 + /lsm 8) -

r
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Hence t + T( ,\cos 6 + Jlsin 6) 2: 0 for all T 2: 0, 6 E R, from which we
obtain ,\ = Jl = O. Also, from T P + Acos 6 + Bsin 6 2: 0 for all r 2: 0 and
6 E R, we obtain A = B = O. A similar proof for S(~3) and S(E23 ) is
omitted.

LEMMA 2.2. If S is a simple extreme positive nnear operator with
o~ S ~ T, then

[

2 *S(xx*) = T3qq T3('\Tle
i82 + JLT2

ei8)q ]
1'\12r; + IJlI2T~ + TIT2(ICOS 61 + gsin ( 1 )

[

T 2

where xx* = 1

9 = i('\ji - "XJl) or

[

2 *
S(xx*) = T3qq T3('\Tle-

i82 + JLT2 e -
i8 )q ]

I'\12T~ + IJLI2T~ + Tl T2 (I' cos 61 + g'sin 6t)

where f' = f,g' = -g.

Proof. Note the S(E33) = [qq* ~] for some q E C 2 sine S(E33 ) is

extreme by assumption. By Lemma 2.1, S(xx*) is of the form

Since S(xx*) is either 0 or extreme in E3 for all x E C 3, we have

(Iri + gT~ + Tl T2 ('Ycos 61 + 8sin ( 1 ) )qq*

(1) ={Tl (aoos 62 + bsin ( 2 ) + T2( coos 0 + dsin 6)}

. {rl (acos62 + bsin ( 2) + T2 (ccos 6 + dsin O)} *.

By comparing the coefficients of ri, we obtain fqq* = cos2 62aa* +
sin262bb* + sin 6200s 62 (ab* + ba*) for all 62 E R. Thus, we have

(2) aa* = bb* = fqq*, ab* + ba* = O.
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Similarly, from the cofficients of r~, we obtain

(3) cc* = dd* = gqq*, cd* + dc* = 0

From (2) and (3), we have a = Aq, b = oq, c = ILq, d = f3q with
IAI 2 = 10/2 = j,11L12 = 113/2 = g. Let 0 = ).,ei.t:T,f3 = lLe ir and substitute
these into (1) with r2 = 0 to obtain 1 = Icos92+eit:Tsin 92 12 for all 92 E R,
Le. 1 = 1 + 2cos O'sin 92cos 92. Hence, we have cos 0' = 0, i.e. eit:T = ±i.
Similarly, with rl = 0 in (1), we obtain eir = ±i.

Consider the case with eit:T = i, eir = -i, then we have

[

2 *5(xx*) = r3qq

Hence, (1) becomes IAI2rf + 11L12r~ + rlr2(,cos £II + isin £II) = IArlei92 +
jLr2e-i912 = 1).,12rf+11L12r~+rlr2(>'/-te-i(6+62)+Ajtei(8+92» for all £II, 92 E
R, with 9 = 92 - £II. Therefore, we must have A = IL = , = S = 0, i.e.
S = o. Similarly, we obtain 5 = 0 when eit:T = -i, eir = i. Thus, for
a nontrival 5, we must have eit:T = eir which is either i or -i and the
result follows.

THEOREM 2.3. T is not the sum of simple extreme operators.

Proof. Suppose T is a sum of simple extreme poitive linear operators,
then by Lemma 2.2, we must have

(Ajrle-i62 + /-tj r2e- i6)raCJj ]
/).,jI2r~ + IlLjl2r~ + rlr2(-Yjcos £II + Sjsin £II) .

First, we consider the case with m ~ 1,n ~ 1. By comparing the
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correponding elements, we obtain

m m+n m m+n

(4) L Aiqi + L Ajq; = el, L Aiqi - L Ajqj = - ie2

i=l j=m+l i=l j=m+l
m m+l m m+n

(5) L Jliqi + L J1.jq; = ie2, L Jliqi - L J1.jV = el
i;"'l j=m+n i=l j=m+l

m m+n

(6) Lqiqi + L q;qi = h
i=l j=m+l
m+n m+n

(7) L IAil
2 = 1, L lJ1.il

2 = 1
i=l i=l

5

From (4), we obtain :E~l Aiqi = ! Ci) =6, :E';:~+I Ajqj = ! CD ==
6. Note that {6, 6} is linearly independent and hence we may write
V = aj16 +aj26,j = 1,2,··· ,m+n. Then the above relations become

from which we obtain

(8)
m m+n m m+n

L Aiail = L Ajaj2 = 1, L Aiai2 = L Ajajl = 0
i=l j=m+l i=l j=m+l

Similary from (5), we obtain

m m+n m m+n

(9) L Ilia il = L Iljaj2 = 0, L llia i2 = - L Jljajl = 1
i=l j=m+l i=l j=m+l
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:t(laj112+laj212-aj1aj2-aj1aj2). But from (6), we have 2:j:~n Iqjkl2 = 1
for k = 1,2. Therefore, we have

m+n m+n m+n
(10) L laj112 + L laj212 = 4, L (aj1 aj2 + aj1 aj2) = 0

j=l j=l j=l

Now, from (7), 2:::1IAiI2 :5 1 and hence from (8), we must have
2:::1 lai112 ~ 1,2:}:+':+1 la;212 ~ 1. Similarly, from (7) and (9) we

obtain L:~1 lai212 ~ 1, E';:+':+l laj112 ~ 1. Applying these results to
(10), we obtain

m m m+n m+n

L la;t12
= L la;212 = L la;112

= L la;212
= 1.

j=1 j=1 ;=m+1 j=m+1

Therefore, (Xi)~l and (aj1)j=1 are m-vectors of norm less than or equal
to 1 with inner product of value 1. Thus we must have (Xi) = (aj1), but
this would imply Ai = 0 for i ~ m + 1 which is contrary to the second
equality of (8).

Next, we consider the case with n = O. Then the relations (4)
must still hold without the second summation terms, i.e. E~l Aqi =
e1, E::l Aqi = -ie2 which is certainly not possible. A similar argue
ment can be applied so that m =1"0.

3. The Positive Linear Operator T is Extreme

LEMMA 3.1. Let

B( *):;::: [drlI r1 r3(6 cos ()2 + 6sin ()2) + r2r3(1]1 cos () + 1]2 sin ())]
xx arf + br~ +TIT2(fCOS 81 + gsin ()1) ~ 0,

where Ci,1]i E C 2 • Hrank (S(xx*)) :5 2 for all x E C 3 or ifO:5 S:5 T,
then

(1) ci6 = c2*6 = ad, ci6 + c26 = 0,
(2) 1]i1]1 = 1]21]2 = bd, 1]i172 + 1]21]1 = 0,
(3) Ci1]l + 1]i6 = C21]2 + 7726 = fd,
(4) Ci1]2 + 1]26 = -(C2771 + '7i6) = -gd.
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Proof. Note that rank (T(xx*)) $ 2 since for each x =F 0, T(xx*) can
be written as a sum of two extreme elements; one in Ez and the other
in E3 • Hence, if 0 $ S $ T, then rank (S(xx*» $ 2 for all x E C3

•

Therefore, by [5; Theorem 4, p47] we have for all T1, T2 ~ 0, lJ1, lJ2 E R,

d(ar~ + br~ + T1T2(JooslJ1 + gsin lJI)

={r1(ei'cos lJ2+ e2sin lJ2) + r2('7i'oos lJ + '72sin lJ)}

. {T1(6cos lJ2 +6sin lJ2) +T2('71ooS lJ + '72sin lJ)}.

We take r1 = 1, r2 = 0, lJ1 = 0 (i.e. lJ = lJ2) to obtain

for all lJ2 E R and hence (1) follows. Similarly, with r1 = 0, lJ1 = 0 we
obtain (2).

Substituting (1) and (2) into the above equation, we get

d(JcoslJ1+ gsin lJ1) = (ei''71 + '7i'6)cos lJ2cos lJ + (ei''72 + '726)005 lJ2sin lJ

+ (e2'71 + '7i'6)sin lJ2cos lJ + (ei'72 + '726)sin lJ2sin lJ.

We take lJ = 0 (i.e. lJ1 = lJ2) and lJ = i to obtain (3) and (4).

COROLLARY 3.2. Let

where D = [~ 1
2

] with d1 =F 0, d2 =F 0, and let U= [~o ~] where

Uo = (U1, U2) is a unitazy matrix. If 0 $ S $ U 0 T, where U 0 T is tbe
composition of U and T, then the following are satisfied.

(1) (6,6) = (6,6) = a,Re(6,6} = 0
(2) ('71, '71) = ('72, '72) = b, Re('71, '72} = 0
(3) Re(6, '71} = Re(6, '72} = !f
(4) Re(6, '71} = -Re(6, '72} = !g
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where (z,w) = JIZ1Wl + i2Z2W2 wheneverz = (:~), w = (:~). And if
dl =1= 1, d2 -I 1 then

(5) ((Ul - 6, Ul - 6)} = ((U2 -6, U2 - 6)} = 1- a,
Re((ul - 6, U2 - 6)} = 0

(6) ((iU2 -7]I,iu2 -7]1)} = ((iUl -7]2, iU l -7]2» = 1- b,
Re( (iU2 - 7]1, iUl - 7]2}) = 0

(7) Re((ul - 6, Uz - 6)} = Re((iuz -7]I, iul - T/z}} = ~f

(8) Re((u2 - 6, iU2 -7]1}) = -Re((ul - 6, iUl - 7]2}} = ~g,

where ((z, w)} = l.!d
1

ZI Wl + l.!d2Z2W2.

Proof. For z E C3 with zT = (zt, Zz, Z3) where Zj -I 0, i = 1,2,3, we
define

then Sz is a one-to-one strongly positive linear operator, i.e. both Sz

and S;1 are positive. Let d T = (k, Jz;, 1) and let SI = Sd 0 S, Tl =
Sd 0 U 0 T. Then we have 0 ~ SI ~ Tl where

with &,.T = (.f!L k) n'T = (.!IlL .!1.1L). Now we apply Lemma 3.1
~] .../ill' Vil2 ' -'] v'd1' Vil2 '

to obtain e~*e~ = e~*e~ = a, e~*e~ + e~* e~ = 0, etc which can be written
as (6,6) = (6, 6) = a, Re(6, 6} = 0 and so forth. Thus, the relations
(1) through (4) are obtained.

To prove the relations (5) through (8), we consider R = U 0 T - S
and repeat the above process.

LEMMA 3.3. Let

[
d lwhere D = 0
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Proof. Note that we have 0 ~ '\S ~ T for all 0 ~ ,\ ~ 1 and hence if
d1 =/:. 1, d2 =/:. 1 then by Lamma 3.2, we have

((el - '\6,el - ,\6)) = ((e2 - '\6,e2 - ,\6)) = 1- '\a,

. 11- '\z11
2

,\21wl1
2
-1- \

z.e., 1 _ ,\d
1

+ 1 _ ,\d
2

- ",a

where er = (ZI, WI ), er = (Z2, W2) for all 0 ~ ,\ ~ 1. Expanding this
out, we have (1- ,\a){l- >.(d1 +d2) + ,\2d1d2} = (1- ,\d2){1 + >.21z112 
,\(Zl + ZI)} + (1- '\d1){,\2IwlI2}. By comparing the coefficients of '\, we
have a + d1 + d2 = d2 + ZI + ZI and from the cofficients of ,\2, IZ112 +
IW112 + d2(ZI + ZI) = d1d2 + ad1 + ad2. From these relations, we get
IZ112 + IWll2 = ad, and hence we have Re(zI) = t(a+dI) ~ IZII ~ vad1
from which we obtain a = d1 , Zl = Zl = IZll, WI = O. Similarly, from
«(e2 - '\6, e2 - ,\6)) = 1- '\a, we obtain a = d2 •

Now, assume d1 = 1, d2 =/:. 1. Then we have, for r3 = 1

[

1
S(xx*) =

~ [1

o rl(zlcos fh + z2sin ( 2) + r2(alcos 8 + a2sin 8) ]
d2 rl (WI cos 82 + W2sin ()2) + r2({jl cos 8 + !32 sin 8)

ari + br~ + rl r2(fcos 81 + gsin ( 1)

o rlcos 82 + ir2sin 8]
1 rlsin 82 + ir2cos 8

ri +r~

By looking at the firt row of (T - S)(xx*), we find that ZI = 1, Z2 =
O,al = 0,a2 = i since (l,l)-element is zero. Also, from S(xx*) ~ 0, we
find Cei ~ 1, TJiTJi ~ 1, i = 1,2 and hence WI = !32 = o. Therefore, we
have

[

1 0 rlcos 82 + ir2sin 8 ]
S(xx*) = d2 rlw2sin 82 + r2!31cos 8 .

ari + bri + rl r2(fcos ()1 + gsin (1)

Now, we look at the relation

[
d2 rlw2sin 82 + r2Cos 8 ]

o~ ari + br~ + rlr2(jcos 81 + gsin ()1)

< [1 rlsin 82 + r2icos 8]rr + ri .
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Substituting Tl = 1, T2 = 0, 82 = f, we find that

and hence d2 = W2 = a, Similarly, with rl = 0, r2 = 1,8 = 0, we obtain
d2 = b, fh = bi. Thus, we have

a(rlsin 82 + ir2fJlcos 8) ]
a(rl + r~) + rlr2(fcos 81 + gsin 81 )

rlsin 82 + ir2cos 8]
r 2 +r2

1 2

from which we conclude f = g = O. Finally, we now have

But S(xx*) ;::: 0 for all rl, T2 ;::: 0,8,82 E R and hence we must have
a ;::: 1, i.e. a = 1. Therefore, S = T.

LEMMA 3.4. Let

with u'[ = (cos T, sin r), uf = (-sin T, cos T) for some r E R, then there
exists a unitary operator W such that SoW =T.

Proof. Let W = [~ ~ ] then
eiT

ae-2ir
b
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and hence we have

11

- [0S(E13 ) = T(cosTE13-sin TEla) =

Similarly, we get

COS TU1 ~ sin TU2 ] = [0 ~].

- [0S(El3 ) =

- [0S(EJa) =

Therefore, S is of the desired form.

LEMMA 3.5. Let

S( *) = [riP r1ra(6cos 82 +6sin (2);- r2ra('71 cos 8 + 112sin 8)]
xx a1r~ + br~ + r1r2(jcoS 81 + gsin 8I) .

If 0 ~ S ~ T then P = >"1 for Bome 0 ~ >.. ~ l.

Proof. Since P ~ 0, we can take an orthonormal set of eigenvectors
of P. We may take U1, U2 such that ur = (cos T, eiAsin- T), ur =
(-sin T, eilJcos T). From UiU2 = 0, we have ei.\ = eilJ • Let Uo = (UI, U2),

U= [UO ~], then we have

[
r2 IU 0 T(xx*) = a

[
r 2 DU 0 S(xx*) = a

r1ra(U1 cos 82 + u2sin 8) + ir2ra(U2COS 8 + u1sin 8)]
r~ +r~

r1ra(e~COs 8'1. + e~sin ( 2) + r2r3(7J~COS 8 + 7J~sin 8)]
ar~ + br~ + r1 r2(jcos 81 + gsin 8t) .

[1 0 0]
Let V = 0 ei.\ 0 ,then

001



12 Byung 800 Moon

where u~T = (cos r,sin r), u~T = (-sin r,cos r), and Vo U 0 S(xx*) =

[
Ti D T1 T3 (e~'cos 82 + e~sin ( 2) + T2 T3 (7]~' cos 8 + 7]~sin 8)]

aT~ + br~ + r1r2(f'cOS 81 + g'sin BI)

Now, we apply Lemma 3.4 to V 0 U 0 T to find a unitary W such that
V 0 U 0 ToW = T. Then with S' = V 0 U 0 SoW, we have 0 $ S' ~ T
and

[
2D (C'" 8 c"'· 8) ('" 8 III' 8) ]S'(xx*) - T3 T1 T3 r,.1 cos 2 + r,.2 sm 2 + T2 T3 1]1 cos + 1]2 sm

- aT~ + bT~ + T1T2(f"COS 81 + g"sin 8d

Finally we apply Lemma 3.3 to conclude D = >"1. Therefore, P =

UoDUo = >'UoUo = >"I.

LEMMA 3.6. Let

S( *) _ [dT~I T1 T3(el cos 82 + 6sin 82 ) + T2 r3(1]1 cos 8 + 1]2sin 8)]
xx - aT~ + br~ + r1r2(fcos 81 + gsin 8I) .

ItO ~ S ~ T, then S = dT.

Proof. We apply Lemma 3.1 to T - S where 0 ~ T - S ~ T to obtain

(1) (e1 - 6)*(e1 - 6) = (e2 - 6)*(e2 - 6) = (1- a)(1- d)
(2) (ie2 - 1]1)*(ie2 - TJd = (ie1 - 1]2)*(ie - 1]2) = (1 - b)(l - d)
(3) (e1 - e1)*(ie2 - 1]I) + (ie2 - 1]d*(e1 - 6) = - f(1- d)

(e2 - 6)*(ie1 - 1]2) + (ie1 - 1]2)*(e2 - 6) = - f(1- d)
(4) (e1 - 6)*(ie1 - 1]2) + (ie1 - 1]2)*(e1 - 6) = g(l- d)

(e2 - 6)*(ie2 - 1]1) + (ie2 - T]I)*(e2 - 6) = -g(1- d).
We expand (1) and apply Lemma 3.1 to S so that we have er6 +e;el =
a + d, ei6 + e2'e2 = a + d. Thus, we have !(a + d) = Re(e;e1) ~

le;e11 ~ 161 = v;;:J. Therefore, we obtain a = d, Re(e;e1) = 161 = d,
i.e. 1fu = e1. From the second relation of (1), we obtain similarly that

1& = e2·
We repeat the same process on (2) to obtain b = d, e1 = I~;r, e2 =

'~~f. Using these relations, we find from (3) that f = 0 since 7]r1]2 = O.
Similarly, from the second relation of (4), we have ,:t1 (1];1]1-1];7]1) = -g

where we have used the relation ei1]l +1];6 = gd. Thus, 9 = 0 and hence
S=dT.
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THEOREM 3.7. T is an extreme poitive linear operator.

Proof. Let 5 be an arbitrary positive linear operator with 0 :::; 5:::; T.
By Lemma 2.1, 5 is of the form

5( *) _ [r~p r1T3(6cos 82 + 6sin ( 2) + T2T3(771COS 8 + 772sin 8)]
xx - aT; + bT~ + T1T2(JCOS 81 + gsin ( 1)

Now, by Lemma 3.5, P = AI for some 0:::; A :::; 1. Therefore, by Lemma
3.6,5= AT.

4. Examples of Non-Extreme Positive Linear Operators

EXAMPLE 4.1. Let

then 5 is not extreme.

Proof. We difine

iT~ T3(T1ei82 - T2ei8) ]
ri -ir3(T1ei82 - r2 ei8 )

ri + T~ - 2T1T2COS 81

-iri r3(r1 ei82 + r~i8) ]
ri ir3(r1e-i82 + r2 e- i8 )

ri + r~ + 2r1 r2COs 81

then we clearly have 51, 52 ~ 0, S = !(Sl + 52).

ExAMPLE 4.2. Let S(xx*) = [r~ + r~ r~1r~

then S is not extreme.

Proof. We define Sl(XX*) =

r1 r3cos 82 + ir2r3sin 8]
r1 r3sin 82 + ir2r3cos 8 ,

ri

[ r~ + r~ + 2r, r,cos 8, i(r; - r~) + 2r1r2sin 81
r~ + r~ - 2r1 r2cos 81
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-i(r~ - rn - 2rlr2sin fh
r~ + r~ + 2rlr2COS fh

then it is routine to verify that SI, 82 ~ 0 and 8 = lSI + lS2.

[
r~I rlr3cos fJ2 + ir2r3sin fJ]

EXAMPLE 4.3. Let 8(xx*) = irlr3sin fJ2 + r2r3COS fJ
r? +r~

S is not extreme.

Proof. We define

, then

r~ rl e
i82 + r2ei8 ]

r~ rl e i82 + r2ei8 ,

r? + r~ + 2rl r2COS flt
-r~ rlr3e-i82 - r2r3e-i8 ]

r~ -rlr3e-i82 + r2r3e-i8

r~ + r~ - 2rl r2cos fJl

References

[1] Moon, B.S., Eztreme Positive Operators on the Ordered Space of2 x 2 Hermitian
Matrices, Comm. Korean Math. Soc. 5 (1991), 7-26.

[2] , Eztreme Positive Operators from 2 x 2 to 3 x 3 Hermitian Matrices, J
Chungcheong Math. Soc. 4 (1991), 11-37.

[3] , Decomposition of Positive Linear Operators on the Ordered Space of
2x2.,llf:rm#;~~M(,l~Jit;e~iflto ~ Su,m of Four Eztreme Operators, J. Chungcheong
Math. Soc. 3 (1990), 13-25.

[4] Choi, M.D. and Lam, T.Y, Eztremal Positive Semidefinite Forms, Math. Ann.
231 (1977), 1-18.

[5] Gantmacher, F.R., The Theory of Matrices, Chelsea Publ Co, New York, N .Y.,
1959, pp. 47.

Korea Atomic Energy Research Institute
Taejon 305-353, Korea




