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SYSTEMS OF SIMULTANEOUS EQUATIONS OF

VECTOR FORMS ON OPERATOR ALGEBRAS

HAN Sao KIM, IL BONG JUNG AND BOK JA KIM

Let 'H. be a separable, complex Hilbert space and let .c('H.) be the
algebra of all bounded linear operators on 'H.. For a linear manifold A
in .c('H.), a form on A is a linear functional on A. For x, y E 'H., x ® y
denotes the form on .c('H.) defined by x ® yeS) = (Sx, y) for any S E
.c('H.) (d. [2]). An elementary form on a linear manifold A in .c('H.)
is the restriction x ® y I A for x, y E 'H.. It is well-known that there are
several Hausdroff locally convex topologies on .c('H.). Recently several
functional analysists have been studied systems of simultaneous equa
tions of weak* continuous elementary forms on a singly generated opera
tor algebra (d. [3]). This study has been applied to invariant subspaces,
dilation theory, and reflexivity for contraction operators. In particular,
Jung-Kim (d. [5]) introduced property (Tm,n) which are concerned with
the system of simultaneous equations of vector forms and obtained some
new dilations of operator algebras related with property (Tm,n)' This
paper is a sequel study of those in [5].

Throughout this paper the topology T is one of the following topolo
gies; weak operator topology, operator-normed topology, strong operator
topology, weak* topology (or equivalently, ultra-weak operator topol
ogy), or ultra-strong operator topology on .c('H.). N denotes the set of
natural numbers and C the complex plane. A denotes a unital subalge
bra of .c('H.) (note that the closedness of A is not considered).

DEFINITION 1. Suppose that m and n are any cardinal numbers such
that 1 :$ m, n :$ ~o and r is a fixed real number satisfying r 2: 1.
A subalgebra A of .c('H.) has property (Tm,n(r)) if for any T-continuous
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form {cPii}oSi<m on A and r < s, there exist {Xi}O<i<m and {Yi}O<i<n
O<;<n --

in 1f. such that cPij = Xi (8) Yi on A,

.1

IIxill $ (s L IIcPiill) 2 for 0 $ i < m ,
OSi<n

and
1

lIy;1I < (s .].;m 11';;;11)' for 0::; j < n .

PROPOSITION 2. Assume that the adjoint operation 4>(A) = A* from
A onto A*(= {A*IA E A}) is T-continuous under the given topology T in
£(1f.). Suppose m and n are any cardinal numbers such that 1 $ m, n $ No.
Then A has property (Tm,n(r» if and only if A* has property (Tn,m(r».

Proof. Let {cPii} 0Si.<m be a system. of T-continuous forms on A*. Put
OSJ<n

'l/Jii = 4>ii 0 4> for 0 $ i < m,O $ j < n, where <Pii(S) = cPii(S) for S
E A*. Then tPij is T-continuolls form on A. By definition, there exist
{XdOSi<m and {yj}oSi<n in 1f. such that tPii = Xi (is) Yj,

1

II Xill $ (s L II'I/Jiill) "2 for O~ i < m
°Si<n

and

"viII $ .(s L lIt/Jiill)! for 0 $. j < n.
°Si<m

So cPii(A*) = tPiiCA) = (A*Yj, Xi) and II'I/Jijl/ = IIcPji!l.
Moreover, we have
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and

for 0 '5: j < n.

Hence A* has propertY(Tn,m(r». Conversely, we can prove the converse
implication by a similar method.

PROPOSITION 3. If M is aT-closed subalgebra with property (Tm,n(r»
for some cardinal numbers m and n with 1 '5: m, n '5: ~o and N is a T
closed subalgebra of M, then N has property (Tm,n(r».

Proof. Let {<Pij} 0Si<m be a system of T-continuous form on N. Since
O<i<"

A is a locally convex space under the given topology T, by [4, Proposition
14.13], there exists a system {.,pij} 0Si<m of T-continuous forms on M

O<i<"
such that .,pij IN = <Pij and lI.,pij II = Ifq,ij II, 0 '5: i < m, 0 '5: j < n. Hence
there exist Xi, Yj E 1{, 0 '5: i < m, 0'5: j < n, such that tPij = Xi ® Yj ,

1

II Xill < (8 L lI.,pij ll) "2 for 0 '5: i < m
O~j<n

and
1

IIYili s; (s L 1I""i II) , for 0'5: j < n.
O~i<m

Moreover, it follows trivially that ¢>ij = Xi ® Yj,

1

IIXill < (s L 114>;ill)' for O'5:i<m
O~j<n

and
1

IIYjll < (s L 114>'ill) , for 0'5: j < n.
O~i<m
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Hence.N' has property (rm,n(r» and the proof is complete.

We write
A(n) = tA ED .~. ED ~ I A E A},

(n)

which is called an n-th ampliation of A.

PROPOSITION 4. If A has property (rl,l(r», then an ampliation A(n)
has property (rl,n(r» for any cardinal number 11, with 1 :5 n :5 ~o.

Proof. Let {4>i}O<i<n be a system of r-continuous forms on A(n).
Define .,pi(A) = 4>i{i!(n» for any A E A, 0 :5 i < n. Then.,pi is a
r-continuous form on A. So there exist {Xi}o::;i<n and {Yi}o:S;i<n in 11..
such that .,pi = Xi 0 Yi,

and

Set
x= (xo,XI,···)

"--'"
(n)

and
(n)

Yi = (0, ... ,O~Yi, 0, .. ~) for 0:5 i < n.
"--..,..--'

(i)

Then it is easy to show that 4>i = x (j9 Yi, 0 :5 i < n

and
1

IIYill = IIYill:5 (s l14>illP for 0:5 i < n.

Hence A(n) has property (rt,n(r».
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PROPOSITION 5. If A has property (rl,n(r» for some cardinal number
n with 1 ~ n ~ No, then A(n) has property (rn,n(r».

Proof. Let {<Pii }o~i,i<n be a system of r-continuous forms on A(n).
Define tPii(A) = <Pii(A(n» for A E A, 0 ~ i,j < n. Then tPii is a
r-continuous form on A. By hypothesis, for fixed i with 0:5 i < n, there
exist Xi E 1l and {yii}o~i<n in 1£ such that tPii = Xi ® Yii,

and
1

IIYijll :5 (8 IItPijllP for 0:5 j < n.

Set
(n)

Xi = ~"Xi'O, .. ) for 0:5 i < n

(i)

and
(n)

y;=(~) for O~j<n.

Then it is easy to show that <Pi; = Xi ® Yi, 0 ~ i,j < n

and

1

(
8 2;: lI<Pii ll) "2 for 0 ~ j < n.
O~I<n

Hence A(n) has property (rn,n(r».
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PROPOSITION 6. If A has property (TI,I(r)), then A(n
2

) has property
(rn,n(r» for any cardinal number n with 1 :s;: n :s;: No.

Proof. By Proposition 4 and 5 this proof is simple, since (A(n))(n) is

identified with A(n
2

).

We now consider a sufficient condition for property (TI,n). First, we
start from the following definitions.

DEFINITION 7. [1]. If A c £(1£) and x E H, then Cyc(A,x) denotes
the smallest subspace of 1£ that contains x and invariant for every S in
A.

DEFINITION 8. [5]. Suppose m and n are any cardinal numbers with
1:S;: m,n:S;: No. A subalgebra A of £(1£) has property (Tm,n) if for any
system {ePij}OSi<"" on A of T-continuous forms, there exist {Xi}O<i<mO<j<n -
and {Yj}o:::;j<n-in H such that ePij = Xi 0 Yj on A.

For a subalgebra A C £(1£), we write R = E EB~I1£i and A =
L:EBf=IAi, where Hi = 1£ and Ai = A E A, 1 :s;: i :s;: n. And we denote
A= {A IA E A}.

THEOREM 9. If a subalgebra A of £(1£) has property (TI,t) and for
each n E N and x E ii, there exist an element x in 1i and a unitary oper
ator
U: Cyc(A,x) --+ Cyc(A,x) such that

U*(AI Cyc(A,x»U = A ICyc(A, x),

then A has property (TI,n).

Proof. By [5, Proposition 2.4 (c)], for T-continuous form ePi on A,
there exist xand ih in ii such that ePi(A) = (Ax, fJi), o:s;: i < n . Let M
= Cyc(A, x) and Vi = UPM'iJi for 0 :s;: i < n, where PM is the orthogonal
projection onto M. Since

(A x, Yi) = (A x, PMYi)

= (Ax, U*Vi)

= (AUX,Vi)
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for any A E A, <pi(A) = (AUx, Vi) for 0 ~ i < n, A E A. Hence A has
property (Tl,n).
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