ON CERTAIN CLASSES OF
 MULTIVALENT FUNCTIONS

Nak Eun Cho

1. Introduction

Let A_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad(p \in N=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. Let f and g belong to A_{p}. We denote by $f * g$ the Hadamard product or convolution of $f, g \in A_{p}$, that is, if

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad \text { and } \quad g(z)=z^{p}+\sum_{k=1}^{\infty} b_{k+p} z^{k+p}, \tag{1.2}
\end{equation*}
$$

then

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} b_{k+p} z^{k+p} \tag{1.3}
\end{equation*}
$$

Let
Received March 7, 1992.
This paper was supported (in part) by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1991.

$$
\begin{align*}
D^{n+p-1} f(z) & =\frac{z^{p}}{(1-z)^{n+p}} * f(z) \\
& =\frac{z^{p}\left(z^{n-1} f(z)\right)^{(n+p-1)}}{(n+p-1)!} \tag{1.4}
\end{align*}
$$

where n is any integer greater than $-p$.
Goel and Sohi [2] introduced the classes $K_{n, p}$ (i.e., $K_{n, p}$) of functions $f \in A_{p}$ which satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}\right\}>\frac{1}{2} \quad(z \in U) . \tag{1.5}
\end{equation*}
$$

They proved that $K_{n+1, p} \subset K_{n, p}$ for any integer n greater than $-p$.
Let $R_{n, p}(\alpha)$ denote the classes of functions $f \in A_{p}$ which satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{p D^{n+p-1} f(z)}\right\}>\alpha \quad(z \in U) \tag{1.6}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We have $R_{-p+1, p}(\alpha)=S_{p}^{*}(\alpha)$, where $S_{p}^{*}(\alpha)$ is the well known class of p-valent starlike functions of order α. For $p=1$, the classes $R_{n, 1}(0)$ and $R_{n, 1}(\alpha)$ were considered by Singh and Singh [7] and Ahuja [1], respectively.

In this paper, we prove that $R_{n+1, p}(\alpha) \subset R_{n, p}(\alpha)$. Since $R_{-p+1, p}(\alpha)$ is a class of p-valent starlike functions [9], it follows that all functions in $R_{n, p}(\alpha)$ are p-valent. We also investigate some properties of the classes $R_{n, p}(\alpha)$. Furthermore, we obtain some special elements of $R_{n, p}(\alpha)$ by Hadamard product.

2. Some properties of the classes $R_{n+p-1}(\alpha)$

We need the following lemma due to Jack [3] for the proofs of the comming results.

LEMMA 1. Let w be a nonconstant and analytic function in $|z|<r<$ $1, w(0)=0$. If $|w|$ attains its maximum value on the circle $|z|=r$ at z_{0}, then $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$, where k is a real number and $k \geq 1$.

THEOREM 1. $R_{n+1, p}(\alpha) \subset R_{n, p}(\alpha)$ for any integer n greater than $-p$.
proof. Let $f \in R_{n+1, p}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{n+p} f(z)\right)^{\prime}}{p D^{n+p} f(z)}\right\}>\alpha \tag{2.1}
\end{equation*}
$$

We have to show that (2.1) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{p D^{n+p-1} f(z)}\right\}>\alpha \tag{2.2}
\end{equation*}
$$

Define $w(z)$ in U by

$$
\begin{equation*}
\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{p D^{n+p-1} f(z)}=\frac{1+(2 \alpha-1) w(z)}{1+w(z)} \tag{2.3}
\end{equation*}
$$

Clearly $w(z)$ is analytic, $\quad w(0)=0$ and $w(z) \neq-1$. Using the identity

$$
\begin{equation*}
z\left(D^{n+p-1} f(z)\right)^{\prime}=(n+p) D^{n+p} f(z)-n D^{n+p-1} f(z) \tag{2.4}
\end{equation*}
$$

the equation (2.3) may be written as

$$
\begin{equation*}
\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}=\frac{(n+p)+(n+p(2 \alpha-1)) w(z)}{(n+p)(1+w(z))} \tag{2.5}
\end{equation*}
$$

Differentiating (2.5) logarithmically, we obtain

$$
\begin{align*}
\frac{z\left(D^{n+p} f(z)\right)^{\prime}}{p D^{n+p} f(z)} & =\frac{1+(2 \alpha-1) w(z)}{1+w(z)} \tag{2.6}\\
& -\frac{2(1-\alpha) z w^{\prime}(z)}{(1+w(z))((n+p)+(n+p(2 \alpha-1)) w(z))}
\end{align*}
$$

We claim that $|w(z)|<1$. For otherwise, by Lemma 1 , there exists $z_{0} \in U$ such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \tag{2.7}
\end{equation*}
$$

where $\left|w\left(z_{0}\right)\right|=1$ and $k \geq 1$. The equation (2.6) in conjugation with (2.7) yields

$$
\begin{align*}
\frac{z_{0}\left(D^{n+p} f\left(z_{0}\right)\right)^{\prime}}{p D^{n+p} f\left(z_{0}\right)} & =\frac{1+(2 \alpha-1) w\left(z_{0}\right)}{1+w\left(z_{0}\right)} \tag{2.8}\\
& -\frac{2(1-\alpha) z w^{\prime}\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\left((n+p)+(n+p(2 \alpha-1)) w\left(z_{0}\right)\right)}
\end{align*}
$$

Thus

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z_{0}\left(D^{n+p} f\left(z_{0}\right)\right)^{\prime}}{p D^{n+p} f\left(z_{0}\right)}\right\} \leq \alpha-\frac{k(1-\alpha)}{2(n+p \alpha)} \leq \alpha \tag{2.9}
\end{equation*}
$$

which contradicts (2.1) and from (2.3) it follows that $f \in R_{n, p}(\alpha)$.
Theorem 2. Let $f \in R_{n, p}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+p-1} f(z)}{z^{p}}\right\}^{\beta}>\frac{1}{2 \beta p(1-\alpha)+1} \quad(z \in U) \tag{2.10}
\end{equation*}
$$

where $0<\beta \leq \frac{1}{2 p(1-\alpha)}$.
Proof. Let $f \in R_{n, p}(\alpha)$, let $\gamma=\frac{1}{2 \beta p(1-\alpha)+1}$ and let $w(z)$ be analytic function such that

$$
\begin{equation*}
\left\{\frac{D^{n+p-1} f(z)}{z^{p}}\right\}^{\beta}=\frac{1+(2 \gamma-1) w(z)}{1+w(z)} \tag{2.11}
\end{equation*}
$$

Then $w(0)=0$ and $w(z) \neq-1$. The theorem will follow if we can show that $|w(z)|<1$ in U. Now differentiating (2.11) logarithmically, we get

$$
\begin{equation*}
\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{p D^{n+p-1} f(z)}=1-\frac{2(1-\gamma) z w^{\prime}(z)}{\beta p(1+w(z))(1+(2 \gamma-1) w(z))} . \tag{2.12}
\end{equation*}
$$

We now claim that $|w(z)|<1$ for $z \in U$. For otherwise, by lemma 1 , there exists a point $z_{0} \in U$ such that $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$ with $\left|w\left(z_{0}\right)\right|=1$ and $k \geq 1$. Applying this result to (2.12), we obtain

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z_{0}\left(D^{n+p-1} f\left(z_{0}\right)\right)^{\prime}}{p D^{n+p-1} f\left(z_{0}\right)}\right\} \leq 1-\frac{k(1-\gamma)}{2 \beta p \gamma} \leq \alpha \tag{2.13}
\end{equation*}
$$

This contradicts the hypothesis that $f \in R_{n, p}(\alpha)$. Hence we conclude that $|w(z)|<1$ for $z \in U$. This completes the proof of theorem.

Taking $p=1, n=0$ and $\beta=\frac{1}{2(1-\alpha)}$ in Theorem 2, we obtain the following corollary which was proved by Jack [3].

Corollary 1. Let $f \in S_{1}^{*}(\alpha)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z}\right\}^{\frac{1}{2(1-\alpha)}}>\frac{1}{2} \quad(z \in U) \tag{2.14}
\end{equation*}
$$

Putting $p=1, n=0$ and $\beta \neq 1$ in Theorem 2, we have
Corollary 2. Let $f \in S_{1}^{*}(\alpha)\left(\frac{1}{2} \leq \alpha<1\right)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>\frac{1}{3-2 \alpha} \quad(z \in U) \tag{2.15}
\end{equation*}
$$

REMARK. Under the condition of Corollary 2, taking $\alpha=\frac{1}{2}$, we have a result of MacGregor [6].

Taking $p=1, n=1$ and $\beta=\frac{1}{2}$ in Theorem 2, we obtain the following known result of Strohacker [8].

Corollary 3. Let $f \in A_{1}$ be such that $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\sqrt{f^{\prime}(z)}\right\}>\frac{1}{2} \quad(z \in U) \tag{2.16}
\end{equation*}
$$

3. Special elements of the classes $R_{n, p}(\alpha)$

In this section, we form special elements of the classes $R_{n, p}(\alpha)$ by the Hadamard product of elements of $R_{n, p}(\alpha)$ and $h_{c}(z)$, where

$$
h_{c}(z)=\sum_{j=p}^{\infty} \frac{c+p}{c+j} z^{j} \quad(\text { Re } c>-p)
$$

Theorem 3. Let $f \in R_{n, p}(\alpha)$ and $c+p \alpha>0$. Then

$$
\begin{equation*}
F(z)=\left(f * h_{c}\right)(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{3.1}
\end{equation*}
$$

belongs to $R_{n, p}(\alpha)$.
Proof. Let $f \in R_{n+p-1}(\alpha)$. From (3.1), we obtain

$$
\begin{equation*}
z\left(D^{n+p-1} F(z)\right)^{\prime}=(p+c) D^{n+p-1} f(z)-c D^{n+p-1} F(z) \tag{3.2}
\end{equation*}
$$

Define $w(z)$, analytic in U by

$$
\begin{equation*}
\frac{z\left(D^{n+p-1} F(z)\right)^{\prime}}{p D^{n+p-1} F(z)}=\frac{1+(2 \alpha-1) w(z)}{1+w(z)} \tag{3.3}
\end{equation*}
$$

Obviously $w(0)=0$ and $w(z) \neq-1$ for $z \in U$. It is sufficient to show that $|w(z)|<1$ for $z \in U$. Using the identity (3.2) and taking the logarithmic derivative of (3.3), we get

$$
\begin{align*}
\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{p D^{n+p-1} f(z)} & =\frac{1+(2 \alpha-1) w(z)}{1+w(z)} \tag{3.4}\\
& -\frac{2(1-\alpha) z w^{\prime}(z)}{(1+w(z))((c+p)+(c+p(2 \alpha-1)) w(z))} .
\end{align*}
$$

The remaining part of the proof is similar to that of Theorem 1.
In case $c=n$, Theorem 3 can be improved as follows.
Theorem 4. Let $f \in R_{n, p}(\alpha)$ and let n be any integer greater than $-p$. Then

$$
\begin{equation*}
F(z)=\frac{n+p}{z^{n}} \int_{0}^{z} t^{n-1} f(t) d t \tag{3.5}
\end{equation*}
$$

belongs to $R_{n+1, p}(\alpha)$.
Proof. Let $f \in R_{n, p}(\alpha)$. Applying (2.4) and (3.2), we have

$$
\begin{equation*}
D^{n+p-1} f(z)=D^{n+p} F(z) \tag{3.6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{n+p} F(z)\right)^{\prime}}{p D^{n+p} F(z)}\right\}=\operatorname{Re}\left\{\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{p D^{n+p-1} f(z)}\right\}>\alpha \tag{3.7}
\end{equation*}
$$

Hence $F \in R_{n+1, p}(\alpha)$.

Theorem 5. Let $f \in A_{p}$ satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{p D^{n+p-1} f(z)}\right\}>\alpha-\frac{1-\alpha}{2(c+p \alpha)} \quad(z \in U) \tag{3.8}
\end{equation*}
$$

where n is any integer greater than $-p$ and $c+p \alpha>0(0 \leq \alpha<1)$. Then $F(z)$ as given by (3.1) belongs to $R_{n, p}(\alpha)$.
The proof of this theorem is similar to that of Theorem 3 and so we omit it.

The following special cases of Theorem 5 represent some improvement on theorems due to Libera [4] in the sense that much weaker assumptions produce the same results.

Taking $p=1, n=0$ and $\alpha=0$ in Theorem 5 , we get
Corollary 4. Let $f \in A_{1}$ be such that $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>-\frac{1}{2 c} \quad(c>0)$. Then $F(z)$ is starlike in U, where

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t . \tag{3.9}
\end{equation*}
$$

Putting $p=1, n=0$ and $\alpha=0$, Theorem 5 reduces to
Corollary 5. Let $f \in A_{1}$ be such that $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>-\frac{1}{2 c}$ $(c>0)$. Then $F(z)$ as given by (3.9) above is convex in U.

We now prove the converse of Theorem 3.
Theorem 6. Let $F \in R_{n, p}(\alpha)$ and $c+p \alpha>0$. Let $f(z)$ be defined as

$$
\begin{equation*}
F(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{3.10}
\end{equation*}
$$

Then $f \in R_{n, p}(\alpha)$ in $|z|<R_{c}=\frac{-((1-\alpha) p+1)+\sqrt{((1-\alpha) p+1)^{2}+(c+p)(c+2 \alpha p-p)}}{c+2 \alpha p-p}$.
Proof. Since $F \in R_{n, p}(\alpha)$, we can write

$$
\begin{equation*}
\frac{z\left(D^{n+p-1} F(z)\right)^{\prime}}{p D^{n+p-1} F(z)}=(\alpha+(1-\alpha) u(z)) \tag{3.11}
\end{equation*}
$$

where $u \in P$, the class of functions with positive real part in U and normalized by $u(0)=1$. Using the identity (3.2) and differentiating (3.11) logarithmically, we get

$$
\begin{equation*}
\left(\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{p D^{n+p-1} f(z)}-\alpha\right)(1-\alpha)^{-1}=u(z)+\frac{z u^{\prime}(z)}{c+p(\alpha+(1-\alpha) u(z))} \tag{3.12}
\end{equation*}
$$

Using the well known estimate $\left|z u^{\prime}(z)\right| \leq \frac{2 r}{1-r^{2}} \operatorname{Re}\{u(z)\}$ and $\operatorname{Re}\{u(z)\} \geq$ $\frac{1-r}{1+r}(|z|=r)$, the equation (3.12) yields

$$
\begin{align*}
& \operatorname{Re}\left\{\left(\frac{z\left(D^{n+p-1} f(z)\right)^{\prime}}{p D^{n+p-1} f(z)}-\alpha\right)(1-\alpha)^{-1}\right\} \tag{3.13}\\
& \geq \operatorname{Re}\{u(z)\}\left(1-\frac{2 r}{(1-r)((c+p \alpha)(1+r)+(1-\alpha) p(1-r))}\right)
\end{align*}
$$

Now the right hand side of (3.13) is positive provided $r<R_{c}$. Hence $f \in R_{n, p}(\alpha)$ for $|z|<R_{c}$.

Taking $p=1$ and $n=0$ in Theorem 6, we get the following result.
Corollary 6. Let $F \in S_{1}^{*}(\alpha)$ and $c+\alpha>0$. Let $f(z)$ be defined as (3.9). Then $f \in S_{1}^{*}(\alpha)$ for $|z|<\frac{\alpha-2+\sqrt{(2-\alpha)^{2}+(c+1)(c+2 \alpha-1)}}{c+2 \alpha-1}$.

Remark. Above Corollary 6 is an extension of the result obtained earlier by Libera and Livingston [5] for $c=1$.

References

1. O. P. Ahuja, On the radius problem of certain analytic functions, Bull. Korean Math. Soc. 22 (1985), 31-36..
2. R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78 (1980), 353-357.
3. I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474.
4. R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
5. R. J. Libera and A. E. Livingston, On the univalence some classes of regular functions, Proc. Amer. Math. Soc. 30 (1971), 322-336.
6. T. H. MacGregor, The nadius of convexity for starlike functions of order $\frac{1}{2}$, Proc. Amer. Math. Soc. 14 (1963), 71-76.
7. R. Singh and S. Singh, Integals of certain univalent functions, Proc. Amer. Math. Soc. 77 (1979), 336-340.
8. E. Strohaoker, Beitrage zur theorie der schlichten funkitone, Math. Z. 37 (1933), 256-280.
9. T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869-874.

Department of Applied Mathematics
National Fisheries University of Pusan Pusan 608-737, Korea

