Comm. Korean Math. Soc. 8 (1993), No. 1, pp. 103-110

A NOTE ON HOM $(-,-)$ AS BCI-ALGEBRAS

Y. B. Jun*, J. Meng** and S. M. Wei**

In 1966, K. Iséki [13] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. Tiande and Changchang [16] discussed a new class of BCI -algebra, which is called a p-semisimple BCI -algebra. The class of p-semisimple BCI-algebras contains the class of associative BCI-algebras. Iséki and Thaheem [14] proved that if X is an associative BCI-algebra then $\operatorname{Hom}(X)$, the set of all homomorphisms on X, is again an associative BCI-algebra. Aslam and Thaheem [1] proved that if X is a p -semisimple BCI -algebra then $\operatorname{Hom}(X)$ is a p -semisimple BCI -algebra. Hoo and Murty [10] and Deeba and Goel [4] independently showed that $\operatorname{Hom}(X)$ may not, in general, be a BCI -algebra for an arbitrarily BCIalgebra. In view of this result, we can also see that $\operatorname{Hom}(X, Y)$, the set of all homomorphisms of a BCI-algebra X into an arbitrarily BCIalgebra Y, may not, in general, be a BCI-algebra. However, Deeba and Goel [4] proved that if X is a BCI-algebra and Y is a BCK-algebra, then $\operatorname{Hom}(X, Y)$, the set of all homomorphisms from X to Y, is a BCKalgebra and hence a BCI -algebra. Liu [15] also showed the following:

Proposition 1. If X is a $B C I$-algebra and Y a p-semisimple $B C I$ algebra, then $\operatorname{Hom}(X, Y)$ is a p-semisimple BCI-algebra.

In this paper, we discuss the orthogonal subsets of BCI-algebras, and investigate their properties which are related to some ideals.

Recall that a BCI-algebra is an algebra ($X, *, 0$) of type (2,0) satisfying the following conditions for all $x, y, z \in X$:
(1) $(x * y) *(x * z) \leq z * y$
(2) $x *(x * y) \leq y$
(3) $x \leq x$
(4) $x \leq y$ and $y \leq x$ imply $x=y$
(5) $x \leq 0$ implies $x=0$
where $x \leq y$ if and only if $x * y=0$.

The following property holds in any BCI-algebra:
(6) $x * 0=x$.

A BCI-algebra X is said to be associative [12] if $(x * y) * z=x *(y * z)$ for all $x, y, z \in X$. Let X_{+}be the BCK-part of a BCI-algebra X, that is, X_{+}is the set of all $x \in X$ such that $x \geq 0$. If $X_{+}=\{0\}$, then X is called a p-semisimple BCI -algebra[16]. A non-empty subset I of a BCI -algebra X is called an ideal of X if (i) $0 \in I$, (ii) $y * x \in I$ and $x \in I$ imply that $y \in I$. A mapping $f: X \rightarrow Y$ between BCI-algebras X and Y is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. Define the trivial homomorphism 0 as $0(x)=0$ for all $x \in X$. Denote by $\operatorname{Hom}(X, Y)$ the set of all homomorphisms of a BCI-algebra X into a BCI-algebra Y.

Lemma 2. ([1], [2], [3], [5], [6], [11], [16]) Let X be a BCI-algebra. Then the following are equivalent:
(7) X is p-semisimple.
(8) $x * y=0$ implies $x=y$.
(9) $x * a=x * b$ implies $a=b$.
(10) $a * x=b * x$ implies $a=b$.
(11) $a *(a * x)=x$.
(12) $0 *(0 * x)=x$.
(13) $0 * x=0$ implies $x=0$.
(14) $x *(0 * y)=y *(0 * x)$.
(15) $(x * y) *(w * z)=(x * w) *(y * z)$.

Combining Proposition 1 and Lemma 2, we have:
Proposition 3. Let X, Y be $B C I$-algebras. If Y satisfies the one of (8) - (15), then $\operatorname{Hom}(X, Y)$ is a p-semisimple BCI-algebra.

In view of [16, Theorem 8 and Remark 2], we have the following:
Proposition 4. If X is a BCI -algebra and Y a p-semisimple BCI algebra then $\operatorname{Hom}(X, Y)$ is a quasi-commutative $B C I$-algebra of type (0 , $1 ; 0,0)$ and also of type (0,$2 ; 1,0$).

We refer the reader to [7] for details on injective BCI-algebra.
Proposition 5. Let X and Y be BCI-algebras. If Y is injective then Hom (X, Y) is a p-semisimple BCI-algebra.

Proof. By [7], if an algebra is injective in the category of BCI-algebras then it is p-semisimple. It follows from Proposition 1 that $\operatorname{Hom}(X, Y)$ is a p-semisimple BCI-algebra.

A non-empty subset I in a BCI-algebra X is a p-ideal of X [17] if (16) $0 \in I$,
(17) $(x * z) *(y * z) \in I$ and $y \in I$ imply $x \in I$.

Lemma 6. ([17]) A BCI-algebra X is p-semisimple if and only if every ideal of X is a p-ideal.

Lemma 7. ([17]) An ideal I of a $B C I$-algebra X is a p-ideal if and only if $(x * z) *(y * z) \in I$ implies $x * y \in I$, where $x, y, z \in X$.

Definition 8. Let X be a BCI -algebra and Y a p-semisimple $\mathrm{BCI}-$ algebra. Let M and Θ be subsets of X and $\operatorname{Hom}(X, Y)$ respectively. We define orthogonal subsets M^{\perp} and Θ^{\perp} of M and Θ respectively by

$$
M^{\perp}=\{f \in H o m(X, Y) \mid f(x)=0 \text { for all } x \in M\}
$$

and

$$
\Theta^{\perp}=\{x \in X \mid f(x)=0 \text { for all } f \in \Theta\}
$$

Proposition 9. Let X and Y be BCI-algebras with $Y_{+}=\{0\}$. Then we have the following:
(18) $\{0\}^{\perp}=\operatorname{Hom}(X, Y)$, where 0 is the zero element of X.
(19) $X^{\perp}=\{0\}$, where 0 is the zero homomorphism.
(20) If $M_{1} \subseteq M_{2} \subseteq X$, then $M_{2}^{\perp} \subseteq M_{1}^{\perp}$.
(21) $M \subseteq\left(M^{\perp}\right)^{\perp}$, where $M \subseteq X$.
(22) $M^{\perp}=\left(\left(M^{\perp}\right)^{\perp}\right)^{\perp}$, where $M \subseteq X$.
(23) $\{0\}^{\perp}=X$, where 0 is the zero homomorphism.
(24) $\operatorname{Hom}(X, Y)^{\perp}=\{0\}$, where 0 is the zero element of X.
(25) If $N_{1} \subseteq N_{2} \subseteq \operatorname{Hom}(X, Y)$, then $N_{2}^{\perp} \subseteq N_{1}^{\perp}$.
(26) $N \subseteq\left(N^{\perp}\right)^{\perp}$, where $N \subseteq H o m(X, Y)$.
(27) $N^{\perp}=\left(\left(N^{\perp}\right)^{\perp}\right)^{\perp}$, where $N \subseteq H o m(X, Y)$.

Proof. (18), (19), (23) and (24) follow easily from Definition 8. (21) and (26) are easy.
(20) Assume that $M_{1} \subseteq M_{2} \subseteq X$. Let $f \in M_{2}^{\perp}$. Then $f(x)=0$ for all $x \in M_{2}$. This implies $f(x)=0$ for all $x \in M_{1}$, because $M_{1} \subseteq M_{2}$. Hence $f \in M_{1}^{\perp}$ and $M_{2}^{\perp} \subseteq M_{1}^{\perp}$.

For (22) apply (26) to M^{\perp} for $M^{\perp} \subseteq\left(\left(M^{\perp}\right)^{\perp}\right)^{\perp}$, and apply (20) to (21) for $\left(\left(M^{\perp}\right)^{\perp}\right)^{\perp} \subseteq M^{\perp}$.
(25) and (27) are similar to that of (20) and (22) respectively.

Theorem 10. Let X be a BCI-algebra and Y a p-semisimple BCIalgebra. Let M and Θ be subsets of X and $\operatorname{Hom}(X, Y)$ respectively. Then M^{\perp} and Θ^{\perp} are ideals of $\operatorname{Hom}(X, Y)$ and X respectively.

Proof. Note that the zero homomorphism is contained in M^{\perp}. Let $f * g, g \in M^{\perp}$. Then for any $x \in M, 0=(f * g)(x)=f(x) * g(x)=$ $f(x) * 0=f(x)$. Thus $f \in M^{\perp}$, and so M^{\perp} is an ideal of $\operatorname{Hom}(X, Y)$. Next since $f(0)=0$ for every $f \in \Theta$, we have $0 \in \Theta^{\perp}$. Assume that $y * x, x \in \Theta^{\perp}$. Then $0=f(y * x)=f(y) * f(x)=f(y) * 0=f(y)$ for every $f \in \Theta$. This implies that $y \in \Theta^{\perp}$, and that Θ^{\perp} is an ideal of X.

Theorem 11. M^{\perp} and Θ^{\perp} are p-ideals of $H o m(X, Y)$ and X respectively.

Proof. Since M^{\perp} is an ideal, the fact that it is a p-ideal can be directly obtained from Proposition 1 and Lemma 6. But we prefer to give a direct proof. Note that $0 \in M^{\perp}$, where 0 is the zero homomorphism. Let $(f * h) *(g * h) \in M^{\perp}$ and $g \in M^{\perp}$. Then $0=((f * h) *(g * h))(x)=$ $(f * h)(x) *(g * h)(x)=(f(x) * h(x)) *(g(x) * h(x))$ for any $x \in M$. Since Y is p -semisimple, it follows from (3), (6) and Lemma 2(15) that

$$
\begin{aligned}
0 & =(f(x) * h(x)) *(g(x) * h(x)) \\
& =(f(x) * g(x)) *(h(x) * h(x)) \\
& =(f(x) * 0) * 0 \\
& =f(x) * 0 \\
& =f(x)
\end{aligned}
$$

for all $x \in M$. Thus $f \in M^{\perp}$ and M^{\perp} is a p-ideal. Let us now prove that Θ^{\perp} is a p-ideal. By Lemma 7, it is enough to prove that $(x * z) *(y * z) \in$ Θ^{\perp} implies $x * y \in \Theta^{\perp}$, where $x, y, z \in X$. Assume $(x * z) *(y * z) \in \Theta^{\perp}$
for every $x, y, z \in X$. Then by (3), (6) and (15), we have

$$
\begin{aligned}
0 & =f((x * z) *(y * z)) \\
& =f(x * z) * f(y * z) \\
& =(f(x) * f(z)) *(f(y) * f(z)) \\
& =(f(x) * f(y)) *(f(z) * f(z)) \\
& =f(x) * f(y) \\
& =f(x * y)
\end{aligned}
$$

for any $f \in \Theta$. Thus $x * y \in \Theta^{\perp}$. This completes the proof.
The following corollary is obvious.
Corollary 12. Let X and Y be $B C I$-algebras. If Y is injective, then M^{\perp} and Θ^{\perp} are p-ideals of $H o m(X, Y)$ and X respectively.

An ideal I of a BCI-algebra X is a closed ideal [9] if $0 * x \in I$ whenever $x \in I$. It is said to be weakly implicative if whenever $(x * y) * z, y * z \in I$ then $(x * z) * z \in I$.

Lemma 13. ([9]) If I is a closed ideal, then it is weakly implicative.
Theorem 14. M^{\perp} and Θ^{\perp} are closed ideals of $\operatorname{Hom}(X, Y)$ and X respectively.

Proof. We first show that M^{\perp} is a closed ideal. It is enough to prove that $0 * f \in M^{\perp}$ whenever $f \in M^{\perp}$. Let $f \in M^{\perp}$. Then for any $x \in M$, $(0 * f)(x)=0(x) * f(x)=0 * 0=0$, which implies that $0 * f \in M^{\perp}$. To prove that Θ^{\perp} is closed, it is sufficient to show that $0 * x \in \Theta^{\perp}$ whenever $x \in \Theta^{\perp}$. Let $x \in \Theta^{\perp}$. Then $f(0 * x)=f(0) * f(x)=0 * 0=0$ for every $f \in \Theta$. Thus $0 * x \in \Theta^{\perp}$. This completes the proof.

Combining Lemma 13 and Theorem 14, we have the following:
Corollary 15. M^{\perp} and Θ^{\perp} are weakly implicative ideals of Hom $(X$, Y) and X respectively.

The following corollary is obvious.

Corollary 16. Let X and Y be $B C I-a l g e b r a s . ~ I f ~ Y$ is injective, then M^{\perp} and Θ^{\perp} are closed ideals and hence weakly implicative ideals of $\operatorname{Hom}(X, Y)$ and X respectively.

Theorem 17. Let X be a BCI-algebra, Y a p-semisimple BCI-algebra and $M \subseteq X$. Then $\left(M^{\perp}\right)^{\perp}$ is a p-ideal/a closed ideal of X containing M. Moreover, if M is a maximal p-ideal/a maximal closed ideal in X such that $M^{\perp} \neq\{0\}$, then $\left(M^{\perp}\right)^{\perp}=M$.

Proof. By Theorems 11 and $14,\left(M^{\perp}\right)^{\perp}$ is a p-ideal/a closed ideal of X, and by Proposition $9(21), M \subseteq\left(M^{\perp}\right)^{\perp}$. The maximality of M implies that either $M=\left(M^{\perp}\right)^{\perp}$ or $\left(M^{\perp}\right)^{\perp}=X$. If $X=\left(M^{\perp}\right)^{\perp}$, then $f(x)=0$ for every $x \in X$ and $f \in M^{\perp}$. Hence $f=0$ for all $f \in M^{\perp}$. This gives $M^{\perp}=\{0\}$, a contradiction. Therefore $\left(M^{\perp}\right)^{\perp}=M$.

An ideal I of a BCI-algebra X is strongly implicative [9] if whenever $(x * y) * z \in I$ and $y * z \in I$, then $x \in I$.

Theorem 18. Let X be a BCI-algebra and Y an associative BCIalgebra. Then M^{\perp} and Θ^{\perp} are strongly implicative ideals of $\operatorname{Hom}(X, Y)$ and X respectively.

Proof. We give the proof for M^{\perp} and the proof for Θ^{\perp} will follow similarly. Let $(f * g) * h, g * h \in M^{\perp}$. Then $0=((f * g) * h)(x)=$ $(f * g)(x) * h(x)=(f(x) * g(x)) * h(x)$ and $0=(g * h)(x)=g(x) * h(x)$ for any $x \in M$. Since Y is associative, it follows that $0=(f(x) * g(x)) * h(x)=$ $f(x) *(g(x) * h(x))=f(x) * 0=f(x)$ for all $x \in M$ so that $f \in M^{\perp}$. This proves that M^{\perp} is a strongly implicative ideal.

In view of [9, Proposition 1.1], we have the following corollary:
Corollary 19. Let X be a BCI-algebra and Y an associative BCIalgebra. Then $X_{+} \subset \Theta^{\perp}$.

Theorem 20. Let X, Y and Z be BCI-algebras. If Z is p-semisimple, then to each homomorphism $f: X \rightarrow Y$ there corresponds a unique homomorphism $f^{*}: \operatorname{Hom}(Y, Z) \rightarrow H o m(X, Z)$ that satisfies

$$
\begin{equation*}
f^{*}(g)(x)=(g \circ f)(x) \tag{*}
\end{equation*}
$$

for all $x \in X$ and all $g \in \operatorname{Hom}(Y, Z)$.

Proof. For each $g \in \operatorname{Hom}(Y, Z)$ we can define a mapping $\mu: X \rightarrow Z$ by the relation $\mu(x)=g(f(x))$ for all $x \in X$. Since g and f are homomorphisms, therefore μ is a homomorphism and $\mu \in \operatorname{Hom}(X, Z)$. Denote the function defined this way by $f^{*}(g)=\mu$. Thus $f^{*}: \operatorname{Hom}(Y, Z) \rightarrow$ $\operatorname{Hom}(X, Z)$ is a mapping. To prove that f^{*} is a homomorphism, let $g, g^{\prime} \in \operatorname{Hom}(Y, Z)$. Then for any $x \in X, f^{*}\left(g * g^{\prime}\right)(x)=\left(\left(g * g^{\prime}\right) \circ f\right)(x)=$ $\left(g * g^{\prime}\right)(f(x))=g(f(x)) * g^{\prime}(f(x))=f^{*}(g)(x) * f^{*}\left(g^{\prime}\right)(x)=\left(f^{*}(g) *\right.$ $\left.f^{*}\left(g^{\prime}\right)\right)(x)$. Since x is arbitrarily, it follows that $f^{*}\left(g * g^{\prime}\right)=f^{*}(g) * f^{*}\left(g^{\prime}\right)$ so that f^{*} is a homomorphism. The fact that (*) holds for all $x \in X$ obviously determines $f^{*}(g)$ uniquely. This completes the proof.

Theorem 21. Let X, Y and Z be BCI-algebras and let $f: X \rightarrow Y$ be a homomorphism. If Z is p-semisimple then $\operatorname{Ker}\left(f^{*}\right)=\operatorname{Im}(f)^{\perp}$ and $K e r(f)=\operatorname{Im}\left(f^{*}\right)^{\perp}$.

Proof. Let $\phi \in \operatorname{Ker}\left(f^{*}\right)$. Then $f^{*}(\phi)=0$ and hence $f^{*}(\phi)(x)=$ $(\phi \circ f)(x)=0$ for all $x \in X$. Thus $\phi \in \operatorname{Im}(f)^{\perp}$ and $\operatorname{Ker}\left(f^{*}\right) \subset \operatorname{Im}(f)^{\perp}$. Similarly $\operatorname{Im}(f)^{\perp} \subset \operatorname{Ker}\left(f^{*}\right)$ and therefore $\operatorname{Ker}\left(f^{*}\right)=\operatorname{Im}(f)^{\perp}$. Next ior any $\mu \in \operatorname{Im}\left(f^{*}\right)$ we can find a homomorphism $g: Y \rightarrow Z$ such that $f^{*}(g)=\mu$. Then for any $x \in \operatorname{Ker}(f), \mu(x)=f^{*}(g)(x)=(g \circ$ $f)(x)=g(f(x))=g(0)=0$, which implies that $x \in \operatorname{Im}\left(f^{*}\right)^{\perp}$ and that $\operatorname{Ker}(f) \subset \operatorname{Im}\left(f^{*}\right)^{\perp}$. Conversely, let $x \in \operatorname{Im}\left(f^{*}\right)^{\perp}$. Assume that $x \notin \operatorname{Ker}(f)$, that is, $f(x) \neq 0$. Choose a homomorphism $g: Y \rightarrow Z$ with $g(f(x)) \neq 0$. If we say $f^{*}(g)=\mu$ for the g, then $\mu \in \operatorname{Im}\left(f^{*}\right)$ and $\mu(x)=f^{*}(g)(x)=(g \circ f)(x) \neq 0$. This means that $x \notin \operatorname{Im}\left(f^{*}\right)^{\perp}$ which is a contradiction. Thus $x \in \operatorname{Ker}(f)$ and $\operatorname{Im}\left(f^{*}\right)^{\perp} \subset \operatorname{Ker}(f)$. This completes the proof.

The following corollary is obvious.
Corollary 22. Let X, Y and Z be BCI-algebras. If Z is injective, then to each homomorphism $f: X \rightarrow Y$ there corresponds a unique homomorphism $f^{*}: \operatorname{Hom}(Y, Z) \rightarrow H o m(X, Z)$ that satisfies $f^{*}(g)(x)=$ $(g \circ f)(x)$ for all $x \in X$ and all $g \in \operatorname{Hom}(Y, Z)$. Moreover, $\operatorname{Ker}\left(f^{*}\right)=$ $\operatorname{Im}(f)^{\perp}$ and $\operatorname{Ker}(f)=\operatorname{Im}\left(f^{*}\right)^{\perp}$.

References

1. M. Aslam and A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. 36 (1991), 39-45.
2. M. A. Chaudhry, Weakly positive implicative and weakly implicative BCI-algebras, Math. Japon. 35 (1990), 141-151.
3. M. A. Chaudhry and S. A. Bhatti, A note on p-sernisimple BCI-algebras of order four, Math. Japon. 35 (1990), 719-722.
4. E. Y. Deeba and S. K. Goel, A note on BCI-algebras, Math. Japon. 33 (1988), 517-522.
5. W. A. Dudek, On some BCI-algebras with the condition (S), Math. Japon. 31 (1986), 25-29.
6. C. S. Hoo, BCI-algebras with condition (S), Math. Japon. 32 (1987), 749-756.
7. \qquad , Injectives in the categories of BCK and BCI-algebras, Math. Japon. 33 (1988), 237-246.
8.
9. \qquad , Closed ideals and p-semisimple BCI-algebras, Math. Japon. 35 (1990), 1103-1112.
10. C. S. Hoo and P. V. R. Murty, A note on associative BCI-algebras, Math. Japan 32 (1987), 53-55.
11. , Quasi-commutative p-semisimple BCI-algebras, Math. Japon. 32 (2987), 889-894.
12. Q. P. Hu and K. Iséki, ${ }^{\text {P }}$ On BCI-algebras satisfying $(x * y) * z=x *(y * z)$, Math. Seminar Notes 8 (1980), 553-555.
13. K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966).
14. K. Iséki and A. B. Thaheem, Note on BCI-algebras, Math. Japon. 29 (1984), 255-258.
15. Y. Liu, Some results on p-semisimple BCI-algebras, Math. Japon. 37 (1992), 79-81.
16. L. Tiande and X. Changchang, p-radical in BCI-algebras, Math. Japon. 30 (1985), 511-517.
17. Z. Xiaohong and J. Hao, On p-ideals of a BCI-algebra, submitted.
[^0]
[^0]: *Department of Mathematics Education
 Gyeongsang National University
 Chinju 660-701, Korea
 and
 **Department of Mathematics
 Northwest University
 Xian 710069, P. R. China

