Comm. Korean Math. Soc. 8 (1993), No. 1, pp. 103-110

A NOTE ON HOM(-,-) AS BCI-ALGEBRAS

Y. B. JUN*, J. MENG** AND S. M. WEI**

In 1966, K. Iséki [13] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. Tiande and Changchang [16] discussed a new class of BCI-algebra, which is called a p-semisimple BCI-algebra. The class of p-semisimple BCI-algebras contains the class of associative BCI-algebras. Iséki and Thaheem [14] proved that if X is an associative BCI-algebra then Hom(X), the set of all homomorphisms on X, is again an associative BCI-algebra. Aslam and Thaheem [1] proved that if X is a p-semisimple BCI-algebra then Hom(X) is a p-semisimple BCI-algebra. Hoo and Murty [10] and Deeba and Goel [4] independently showed that Hom(X) may not, in general, be a BCI-algebra for an arbitrarily BCIalgebra. In view of this result, we can also see that Hom(X,Y), the set of all homomorphisms of a BCI-algebra X into an arbitrarily BCIalgebra Y, may not, in general, be a BCI-algebra. However, Deeba and Goel [4] proved that if X is a BCI-algebra and Y is a BCK-algebra, then Hom(X,Y), the set of all homomorphisms from X to Y, is a BCKalgebra and hence a BCI-algebra. Liu [15] also showed the following:

PROPOSITION 1. If X is a BCI-algebra and Y a p-semisimple BCIalgebra, then Hom(X, Y) is a p-semisimple BCI-algebra.

In this paper, we discuss the orthogonal subsets of BCI-algebras, and investigate their properties which are related to some ideals.

Recall that a BCI-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following conditions for all $x, y, z \in X$:

 $(1) \ (x*y)*(x*z) \leq z*y$

$$(2) x * (x * y) \leq y$$

(3) $x \leq x$

(4) $x \leq y$ and $y \leq x$ imply x = y

(5) $x \leq 0$ implies x = 0

where $x \leq y$ if and only if x * y = 0.

Received May 18, 1992.

The following property holds in any BCI-algebra: (6) x * 0 = x.

A BCI-algebra X is said to be associative [12] if (x * y) * z = x * (y * z)for all $x, y, z \in X$. Let X_+ be the BCK-part of a BCI-algebra X, that is, X_+ is the set of all $x \in X$ such that $x \ge 0$. If $X_+ = \{0\}$, then X is called a p-semisimple BCI-algebra[16]. A non-empty subset I of a BCI-algebra X is called an ideal of X if (i) $0 \in I$, (ii) $y * x \in I$ and $x \in I$ imply that $y \in I$. A mapping $f : X \to Y$ between BCI-algebras X and Y is called a homomorphism if f(x*y) = f(x)*f(y) for all $x, y \in X$. Define the trivial homomorphism 0 as 0(x) = 0 for all $x \in X$. Denote by Hom(X, Y) the set of all homomorphisms of a BCI-algebra X into a BCI-algebra Y.

LEMMA 2. ([1], [2], [3], [5], [6], [11], [16]) Let X be a BCI-algebra. Then the following are equivalent:

- (7) X is p-semisimple.
- (8) x * y = 0 implies x = y.
- (9) x * a = x * b implies a = b.
- (10) a * x = b * x implies a = b.
- (11) a * (a * x) = x.
- (12) 0 * (0 * x) = x.
- (13) 0 * x = 0 implies x = 0.
- (14) x * (0 * y) = y * (0 * x).
- (15) (x * y) * (w * z) = (x * w) * (y * z).

Combining Proposition 1 and Lemma 2, we have:

PROPOSITION 3. Let X, Y be BCI-algebras. If Y satisfies the one of (8) - (15), then Hom(X, Y) is a p-semisimple BCI-algebra.

In view of [16, Theorem 8 and Remark 2], we have the following:

PROPOSITION 4. If X is a BCI-algebra and Y a p-semisimple BCIalgebra then Hom(X, Y) is a quasi-commutative BCI-algebra of type (0, 1; 0, 0) and also of type (0, 2; 1, 0).

We refer the reader to [7] for details on injective BCI-algebra.

PROPOSITION 5. Let X and Y be BCI-algebras. If Y is injective then Hom(X, Y) is a p-semisimple BCI-algebra.

104

Proof. By [7], if an algebra is injective in the category of BCI-algebras then it is p-semisimple. It follows from Proposition 1 that Hom(X, Y) is a p-semisimple BCI-algebra.

A non-empty subset I in a BCI-algebra X is a p-ideal of X [17] if

- $(16) \ 0 \in I,$
- (17) $(x * z) * (y * z) \in I$ and $y \in I$ imply $x \in I$.

LEMMA 6. ([17]) A BCI-algebra X is p-semisimple if and only if every ideal of X is a p-ideal.

LEMMA 7. ([17]) An ideal I of a BCI-algebra X is a p-ideal if and only if $(x * z) * (y * z) \in I$ implies $x * y \in I$, where $x, y, z \in X$.

DEFINITION 8. Let X be a BCI-algebra and Y a p-semisimple BCIalgebra. Let M and Θ be subsets of X and Hom(X, Y) respectively. We define orthogonal subsets M^{\perp} and Θ^{\perp} of M and Θ respectively by

 $M^{\perp} = \{ f \in Hom(X, Y) | f(x) = 0 \text{ for all } x \in M \}$

and

$$\Theta^{\perp} = \{ x \in X | f(x) = 0 \text{ for all } f \in \Theta \}.$$

PROPOSITION 9. Let X and Y be BCI-algebras with $Y_+ = \{0\}$. Then we have the following:

- (18) $\{0\}^{\perp} = Hom(X, Y)$, where 0 is the zero element of X.
- (19) $X^{\perp} = \{0\}$, where 0 is the zero homomorphism.
- (20) If $M_1 \subseteq M_2 \subseteq X$, then $M_2^{\perp} \subseteq M_1^{\perp}$.

(21)
$$M \subseteq (M^{\perp})^{\perp}$$
, where $M \subseteq X$

(22)
$$M^{\perp} = ((M^{\perp})^{\perp})^{\perp}$$
, where $M \subseteq X$.

(23) $\{0\}^{\perp} = X$, where 0 is the zero homomorphism.

(24) $Hom(X,Y)^{\perp} = \{0\}$, where 0 is the zero element of X.

- (25) If $N_1 \subseteq N_2 \subseteq Hom(X, Y)$, then $N_2^{\perp} \subseteq N_1^{\perp}$.
- (26) $N \subseteq (N^{\perp})^{\perp}$, where $N \subseteq Hom(X, Y)$.
- (27) $N^{\perp} = ((N^{\perp})^{\perp})^{\perp}$, where $N \subseteq Hom(X, Y)$.

Proof. (18), (19), (23) and (24) follow easily from Definition 8. (21) and (26) are easy.

(20) Assume that $M_1 \subseteq M_2 \subseteq X$. Let $f \in M_2^{\perp}$. Then f(x) = 0 for all $x \in M_2$. This implies f(x) = 0 for all $x \in M_1$, because $M_1 \subseteq M_2$. Hence $f \in M_1^{\perp}$ and $M_2^{\perp} \subseteq M_1^{\perp}$.

For (22) apply (26) to M^{\perp} for $M^{\perp} \subseteq ((M^{\perp})^{\perp})^{\perp}$, and apply (20) to (21) for $((M^{\perp})^{\perp})^{\perp} \subseteq M^{\perp}$.

(25) and (27) are similar to that of (20) and (22) respectively.

THEOREM 10. Let X be a BCI-algebra and Y a p-semisimple BCIalgebra. Let M and Θ be subsets of X and Hom(X,Y) respectively. Then M^{\perp} and Θ^{\perp} are ideals of Hom(X,Y) and X respectively.

Proof. Note that the zero homomorphism is contained in M^{\perp} . Let $f * g, g \in M^{\perp}$. Then for any $x \in M$, 0 = (f * g)(x) = f(x) * g(x) = f(x) * 0 = f(x). Thus $f \in M^{\perp}$, and so M^{\perp} is an ideal of Hom(X,Y). Next since f(0) = 0 for every $f \in \Theta$, we have $0 \in \Theta^{\perp}$. Assume that $y * x, x \in \Theta^{\perp}$. Then 0 = f(y * x) = f(y) * f(x) = f(y) * 0 = f(y) for every $f \in \Theta$. This implies that $y \in \Theta^{\perp}$, and that Θ^{\perp} is an ideal of X.

THEOREM 11. M^{\perp} and Θ^{\perp} are p-ideals of Hom(X, Y) and X respectively.

Proof. Since M^{\perp} is an ideal, the fact that it is a p-ideal can be directly obtained from Proposition 1 and Lemma 6. But we prefer to give a direct proof. Note that $0 \in M^{\perp}$, where 0 is the zero homomorphism. Let $(f * h) * (g * h) \in M^{\perp}$ and $g \in M^{\perp}$. Then 0 = ((f * h) * (g * h))(x) = (f * h)(x) * (g * h)(x) = (f(x) * h(x)) * (g(x) * h(x)) for any $x \in M$. Since Y is p-semisimple, it follows from (3), (6) and Lemma 2(15) that

$$0 = (f(x) * h(x)) * (g(x) * h(x))$$

= (f(x) * g(x)) * (h(x) * h(x))
= (f(x) * 0) * 0
= f(x) * 0
= f(x)

for all $x \in M$. Thus $f \in M^{\perp}$ and M^{\perp} is a p-ideal. Let us now prove that Θ^{\perp} is a p-ideal. By Lemma 7, it is enough to prove that $(x*z)*(y*z) \in \Theta^{\perp}$ implies $x*y \in \Theta^{\perp}$, where $x, y, z \in X$. Assume $(x*z)*(y*z) \in \Theta^{\perp}$

for every $x, y, z \in X$. Then by (3), (6) and (15), we have

$$0 = f((x * z) * (y * z))$$

= $f(x * z) * f(y * z)$
= $(f(x) * f(z)) * (f(y) * f(z))$
= $(f(x) * f(y)) * (f(z) * f(z))$
= $f(x) * f(y)$
= $f(x * y)$

for any $f \in \Theta$. Thus $x * y \in \Theta^{\perp}$. This completes the proof.

The following corollary is obvious.

COROLLARY 12. Let X and Y be BCI-algebras. If Y is injective, then M^{\perp} and Θ^{\perp} are p-ideals of Hom(X,Y) and X respectively.

An ideal I of a BCI-algebra X is a closed ideal [9] if $0 * x \in I$ whenever $x \in I$. It is said to be weakly implicative if whenever $(x * y) * z, y * z \in I$ then $(x * z) * z \in I$.

LEMMA 13. ([9]) If I is a closed ideal, then it is weakly implicative.

THEOREM 14. M^{\perp} and Θ^{\perp} are closed ideals of Hom(X, Y) and X respectively.

Proof. We first show that M^{\perp} is a closed ideal. It is enough to prove that $0 * f \in M^{\perp}$ whenever $f \in M^{\perp}$. Let $f \in M^{\perp}$. Then for any $x \in M$, (0 * f)(x) = 0(x) * f(x) = 0 * 0 = 0, which implies that $0 * f \in M^{\perp}$. To prove that Θ^{\perp} is closed, it is sufficient to show that $0 * x \in \Theta^{\perp}$ whenever $x \in \Theta^{\perp}$. Let $x \in \Theta^{\perp}$. Then f(0 * x) = f(0) * f(x) = 0 * 0 = 0 for every $f \in \Theta$. Thus $0 * x \in \Theta^{\perp}$. This completes the proof.

Combining Lemma 13 and Theorem 14, we have the following:

COROLLARY 15. M^{\perp} and Θ^{\perp} are weakly implicative ideals of Hom(X, Y) and X respectively.

The following corollary is obvious.

COROLLARY 16. Let X and Y be BCI-algebras. If Y is injective, then M^{\perp} and Θ^{\perp} are closed ideals and hence weakly implicative ideals of Hom(X, Y) and X respectively.

THEOREM 17. Let X be a BCI-algebra, Y a p-semisimple BCI-algebra and $M \subseteq X$. Then $(M^{\perp})^{\perp}$ is a p-ideal/a closed ideal of X containing M. Moreover, if M is a maximal p-ideal/a maximal closed ideal in X such that $M^{\perp} \neq \{0\}$, then $(M^{\perp})^{\perp} = M$.

Proof. By Theorems 11 and 14, $(M^{\perp})^{\perp}$ is a p-ideal/a closed ideal of X, and by Proposition 9(21), $M \subseteq (M^{\perp})^{\perp}$. The maximality of M implies that either $M = (M^{\perp})^{\perp}$ or $(M^{\perp})^{\perp} = X$. If $X = (M^{\perp})^{\perp}$, then f(x) = 0 for every $x \in X$ and $f \in M^{\perp}$. Hence f = 0 for all $f \in M^{\perp}$. This gives $M^{\perp} = \{0\}$, a contradiction. Therefore $(M^{\perp})^{\perp} = M$.

An ideal I of a BCI-algebra X is strongly implicative [9] if whenever $(x * y) * z \in I$ and $y * z \in I$, then $x \in I$.

THEOREM 18. Let X be a BCI-algebra and Y an associative BCIalgebra. Then M^{\perp} and Θ^{\perp} are strongly implicative ideals of Hom(X, Y)and X respectively.

Proof. We give the proof for M^{\perp} and the proof for Θ^{\perp} will follow similarly. Let $(f * g) * h, g * h \in M^{\perp}$. Then 0 = ((f * g) * h)(x) =(f * g)(x) * h(x) = (f(x) * g(x)) * h(x) and 0 = (g * h)(x) = g(x) * h(x) for any $x \in M$. Since Y is associative, it follows that 0 = (f(x) * g(x)) * h(x) =f(x) * (g(x) * h(x)) = f(x) * 0 = f(x) for all $x \in M$ so that $f \in M^{\perp}$. This proves that M^{\perp} is a strongly implicative ideal.

In view of [9, Proposition 1.1], we have the following corollary:

COROLLARY 19. Let X be a BCI-algebra and Y an associative BCIalgebra. Then $X_+ \subset \Theta^{\perp}$.

THEOREM 20. Let X, Y and Z be BCI-algebras. If Z is p-semisimple, then to each homomorphism $f : X \to Y$ there corresponds a unique homomorphism $f^* : Hom(Y,Z) \to Hom(X,Z)$ that satisfies

$$(*) f^*(g)(x) = (g \circ f)(x)$$

for all $x \in X$ and all $g \in Hom(Y, Z)$.

108

Proof. For each $g \in Hom(Y, Z)$ we can define a mapping $\mu : X \to Z$ by the relation $\mu(x) = g(f(x))$ for all $x \in X$. Since g and f are homomorphisms, therefore μ is a homomorphism and $\mu \in Hom(X, Z)$. Denote the function defined this way by $f^*(g) = \mu$. Thus $f^* : Hom(Y, Z) \to$ Hom(X, Z) is a mapping. To prove that f^* is a homomorphism, let $g, g' \in Hom(Y, Z)$. Then for any $x \in X$, $f^*(g * g')(x) = ((g * g') \circ f)(x) =$ $(g * g')(f(x)) = g(f(x)) * g'(f(x)) = f^*(g)(x) * f^*(g')(x) = (f^*(g) *$ $f^*(g'))(x)$. Since x is arbitrarily, it follows that $f^*(g * g') = f^*(g) * f^*(g')$ so that f^* is a homomorphism. The fact that (*) holds for all $x \in X$ obviously determines $f^*(g)$ uniquely. This completes the proof.

THEOREM 21. Let X, Y and Z be BCI-algebras and let $f: X \to Y$ be a homomorphism. If Z is p-semisimple then $Ker(f^*) = Im(f)^{\perp}$ and $Ker(f) = Im(f^*)^{\perp}$.

Proof. Let $\phi \in Ker(f^*)$. Then $f^*(\phi) = 0$ and hence $f^*(\phi)(x) = (\phi \circ f)(x) = 0$ for all $x \in X$. Thus $\phi \in Im(f)^{\perp}$ and $Ker(f^*) \subset Im(f)^{\perp}$. Similarly $Im(f)^{\perp} \subset Ker(f^*)$ and therefore $Ker(f^*) = Im(f)^{\perp}$. Next for any $\mu \in Im(f^*)$ we can find a homomorphism $g: Y \to Z$ such that $f^*(g) = \mu$. Then for any $x \in Ker(f)$, $\mu(x) = f^*(g)(x) = (g \circ f)(x) = g(f(x)) = g(0) = 0$, which implies that $x \in Im(f^*)^{\perp}$ and that $Ker(f) \subset Im(f^*)^{\perp}$. Conversely, let $x \in Im(f^*)^{\perp}$. Assume that $x \notin Ker(f)$, that is, $f(x) \neq 0$. Choose a homomorphism $g: Y \to Z$ with $g(f(x)) \neq 0$. If we say $f^*(g) = \mu$ for the g, then $\mu \in Im(f^*)^{\perp}$ and $\mu(x) = f^*(g)(x) = (g \circ f)(x) \neq 0$. This means that $x \notin Im(f^*)^{\perp}$ which is a contradiction. Thus $x \in Ker(f)$ and $Im(f^*)^{\perp} \subset Ker(f)$. This completes the proof.

The following corollary is obvious.

COROLLARY 22. Let X, Y and Z be BCI-algebras. If Z is injective, then to each homomorphism $f : X \to Y$ there corresponds a unique homomorphism $f^* : Hom(Y,Z) \to Hom(X,Z)$ that satisfies $f^*(g)(x) =$ $(g \circ f)(x)$ for all $x \in X$ and all $g \in Hom(Y,Z)$. Moreover, $Ker(f^*) =$ $Im(f)^{\perp}$ and $Ker(f) = Im(f^*)^{\perp}$.

References

1. M. Aslam and A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. 36 (1991), 39-45.

109

- M. A. Chaudhry, Weakly positive implicative and weakly implicative BCI-algebras, Math. Japon. 35 (1990), 141-151.
- 3. M. A. Chaudhry and S. A. Bhatti, A note on p-semisimple BCI-algebras of order four, Math. Japon. 35 (1990), 719-722.
- 4. E. Y. Deeba and S. K. Goel, A note on BCI-algebras, Math. Japon. 33 (1988), 517-522.
- 5. W. A. Dudek, On some BCI-algebras with the condition (S), Math. Japon. 31 (1986), 25-29.
- 6. C. S. Hoo, BCI-algebras with condition (S), Math. Japon. 32 (1987), 749-756.
- 7. _____, Injectives in the categories of BCK and BCI-algebras, Math. Japon. 33 (1988), 237-246.
- 8. ____, Filters and ideals in BCI-algebras, Math. Japon. 36 (1991), 987-997.
- 9. ____, Closed ideals and p-semisimple BCI-algebras, Math. Japon. 35 (1990), 1103-1112.
- 10. C. S. Hoo and P. V. R. Murty, A note on associative BCI-algebras, Math. Japan 32 (1987), 53-55.
- 11. ____, Quasi-commutative p-semisimple BCI-algebras, Math. Japon. 32 (2987), 889-894.
- 12. Q. P. Hu and K. Iséki, On BCI-algebras satisfying (x * y) * z = x * (y * z), Math. Seminar Notes 8 (1980), 553-555.
- 13. K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966).
- 14. K. Iséki and A. B. Thaheem, Note on BCI-algebras, Math. Japon. 29 (1984), 255-258.
- 15. Y. Liu, Some results on p-semisimple BCI-algebras, Math. Japon. 37 (1992), 79-81.
- L. Tiande and X. Changchang, p-radical in BCI-algebras, Math. Japon. 30 (1985), 511-517.
- 1. Z. Xiaohong and J. Hao, On p-ideals of a BCI-algebra, submitted.

*Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea and **Department of Mathematics Northwest University

Xian 710069, P. R. China