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EXISTENCE THEOREM OF AN OPERATOR-VALUED

SEQUENTIAL FUNCTION SPACE INTEGRAL

KUL PHYO HONG

In this paper we prove that an operator-valued sequential function
space integral exists under some conditions and we investigate its prop­
erties. First of all, we present some necessary notations and definitions.

Let N, R and R+ denote the set of all positive integers, the set of
all real numbers and the set of all positive real numbers, respectively.
Let C, C+ and C+denote, respectively, the set of all complex numbers,
the set of all complex numbers with positive real part and the set of
all nonzero complex numbers with nonnegative real part. Let C[a, b]
denote the space of all real-valued continuous functions on [a, b] and let
Co [a, b] dEtg.9te-the subspace of C[a, b] which vanishes at a; that is, the
associated Wiener space. mw will denote Wiener measure on Co [a, b].
In fact, every element y in C[a, b] has a unique representation y = x +€
where x in Co [a, b] and €in R. Let S[a, b] denote the space of all piecewise
continuous functions on [a, b]. In this paper, we will be concerned with
only the uniform topologies on C[a, b], Co [a, b] and S[a, b], and TJ will
denote a Borel measure on [a, b]. Let L 2(R) be the space of all C-valued
Borel measurable functions on R which is square integrable with respect
to Lebesgue measure mL on R and let £(L2 (R)) denote the space of all
bounded linear operators from L 2(R) into itself.

DEFINITION 1. For'x in C+, the operator C), from L 2 (R) into itself
is defined by

(C),¢)(€) = ,x! (21l")-! l ¢(x)exp{ - ,x(x; 0
2

}dmL(x)

where ¢ in L 2(R) and ,x~ takes a nonnegative real part.

Received June 18, 1992.
This work was supported by the faculty research fund. of Daelim Institution,

1991.



122 Kul Phyo Hong

REMARKS. (1) C1< is a bounded linear operator from L 2 (R) into itself
with IICAII ::;; 1 [ 5 j p 776 ] and {CAl A E C+ U{O}} is a holomorphic
semigroup where CA is the identity map if A = 0 [8 ].

(2) For q in R+, C~iq = Ciq where C!iq is the adjoint operator of
C-iq [5 ; P 776].

DEFINITION 2. The mixed norm space L~I:" is defined by the space
of all C-valued Borel measurable functions 0 on [a, b] x R such that

11011001:" = f 1I0(s, ')lIoodl11l(s) < +00
ira,b]

and 0 is /111 x mL -almost everywhere (a.e.) continuous on [a, b] x R where
1111 is the total variation measure of 11.

REMARKS. (1) 119(s, ')1100 is a Borel measurable function of s in [a, b].
(2) Clearly L~I:" equipped with the norm 11·11001:" becomes a normed

linear space but not a Banach space.

DEFINITION 3. For s in [a, b] and for 9 in L~I:", we define the mul­
tiplication operator O(s) from L 2( R) into itself by

REMARKS. (1) The operator O(s) is well-defined for 11-a.e. sin [a,b]
[4 ; p 8].

(2) 9(s) is a strongly measurable function of s in [a, b] [ 8 ].
(3) O(s) is a bounded linear operator with 1I0(s)1I = 119(8, ·)1100 for

rra;e.s iura, It] [6 ; pl46,4 j p9}.

Let 0' : a = to < tl < t2 < ... < t n = b be any partition of [a, b],
and the norm of 0', denoted by 110'11, equals. max (ti - ti-d. For x in

.=1,2"" ,n
C[a, b], we define

{
X(ti-l) if ti-l::;; t < ti (i = 1,2"" ,n)

xo-(t) == x(b) if t = b.
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IT 0" is given as in the above and {vo, VI, ... ,vn} is any set of (n +1) real
numbers, we define the function

if ti-l ~ t < ti (i = 1,2"" ,n)
if t = b.

Clearly, Xu and z(O"iVO,VI,'" ,vnit) are in S[a,b]. And for a given
functional F on S[a, b], Fu(vo, VI,'" ,vn) is given by

fu(x(to),x(tI), ... ,x(tn»= F[ Z(O"iX(to),x(tI), ... ,X(tn)i') ]

for x in era, b].
Let 8 be in L~I:'1 and let 0" be given as in the above. Let

F(x) = 1 8(s,x(s»d77(S) for x in S[a,b].
[a,b]

Then F is well-defined on S[a, b]. In fact,

fu(x(tO),x(t I ),··· ,x(tn»= t 18(S,X(ti_l» d7](s)+8(b,x(b»)7J({b}).
i=1 [t;_l,t;)

Hence for A in R+ and for each t/J in L2(R), by the Wiener integration
formula and the change of variables Vi = A-! Ui +Vo (i = 1,2, ... ,n), we
have

X~ [(21r)n(tl - a)··· (tn - tn-I)] -! f fu(vo, VI,'" ,vn)t/J(vn)·Jnn

{ I:n A(Vi - Vi_I)2} dXn ()'exp - mL v·
. 2(ti - ti-I) i=1 11=1

= [(21rt(tl -a)··· (tn-tn-I)] -t f fu(vo, A-tUl +Vo," . ,A-~Un +vo)·Jnn
. t/J(A-!Un + vo)exp{-~ (~i - Ui-I);} d.X mL(ui)

?-' 2 ti - ti-l 1=11=1

= f F(A-!Xu + vo) t/J(A-!x(b) + vo) dmw(x) where Uo = O.
JCo[a,b]

Now we present the following definitions from the motivation specified
above.



124 Kul Phyo Hong

DEFINITION 4. Let A be in C+ and let t/J be in L 2(R). Let F be a
C-valued functional on S[a, b]. For a given partition 0" : a = to < t 1 <
... < tn = b, the operator If(F) is defined by the formula

(In F)t/JHe) = A~ [(211" )n(tl -a) ... (tn-tn-I)] -! f fO'(Vo, VI, ... ,vn )·lRn

. ¢(vn)exp{ - t ).~~:i -=-::=:0 d,;tmL(Vi)

where Vo = e, fO'(vo,vl,'" ,vn) = F[z(O"jVO,Vl,'" ,Vnj')] and
z(O"jVO,Vl,'" ,Vnjt) is defined as in the above. (If n is odd, we always
choose A-! with nonnegative real part). Let A be in C+ and let F be
a functional on S[a, b] such that If(F)t/J exists for t/J in L 2 (R) and for
every partition 0" of [a, b]. IT

lim f (If(F)t/J)(e)4>(e)dmL(O
110'11-0 lR

exists for all t/J, 4> in L2(R), then this weak limit, w -limIf(F) is called
110'11-+0

the operator-valued sequential function space integral of F for A in C+
and denoted by I~eq(F)j i.e.,

where the parenthesis (., .) denotes inner product.

DEFINITION 5. Let A be in R+ and let t/J be in L2(R). Let F be a
C-valued functional on C[a, b]. Then the operator I>.(F) is defined by
the Wiener integral

(I>.(F)t/J)(e) = f F(A-!X +e)t/J(A-!x(b) +e)dmw(x).
leola,b]

For A in C+, the operator-valued analytic function space integral of F,
11n (F) is defined to be the operator-valued function of A which agree
with I>.(F) for A in ~ and is analytic on C+.

By the Fubini's Theorem and the Wiener integration formula,we have
the following two lemmas [1]



Existence theorem of an operator-valued sequential function space integral 125

LEMMA 6. If 8(S, u) is'fJ X mL-a.e. continuous on [a, b] X R, then for
almost all x in Co [a, b]' 8(s, xes)) is continuous for 'fJ-a.e. s in [a, b].

LEMMA 7. Let 8(s, u) be'fJ xmL-a.e. continuous on [a, b] xR and let A
bein~. Thenfor'fJxmL-a.e. (x,e)inCo[a,b]xR, 8(S,A-~X(S)+e)
is continuous for 'fJ-a.e. s in [a, b].

From [1; p 532], we have the following;

LEMMA 8. Let {xn(z)} be a sequence of vector-valued holomorpbic
functions in a domain D of the complex plane whose values lie in a
separable Hilbert space H. Let IIxn(z)1I ~ B for z in D. Let {zd be
a sequence of distinct points of D such that lim Zk = Zo in D. Let

k~oo

lim (Xn(Zk), y) exist for each y in H and each k. Then there exists x(z)
n~oo

in H such that lim (xn(z), y) = (x(z), y) and x(z) is holomorphic in D
n~oo

and lim (xn(z),y) = (x(z),y) uniformly on any compact subset of D
n~oo

for each yin H.

THEOREM 9. Let 8 be in L~l:1/ and let

F(x) = 1 8(s,x(s») d'fJ(s)
[a,b]

for x in B[a, b].

Then the operator-valued sequential function space integral of Fm,
11eq(Fm) exists for A in C+ and for min N, and (I1eq(Fm)'ljJ, <t» =

lim (I>.(Fm)'ljJ, <t» for all 'ljJ, <t> in L2(R). Moreover, 11eq(Fm) = I~n(Fm).
II"'"~O

Proof. Let 0' : a = to < t1 < ... < t n = b be a given partition of [a, b].
Then Fm is well-defined on 8[a, b]. In fact,

f;:(x(to),x(tI), ... ,x(tn))

= F m [z(O'; x(to),x(tI),'" ,x(tn); .)]

= [~.4.-",;) 8(.,x(t;_,» dq(.) +8(b,x(b)h({b})r
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Thus we have formally that for ,\ in R+ and for tf; in L2 (R),

(I! (Fm)tf;) (e)

=,\"i-[(27rt(tl-a) ... (tn-tn-d]-~ [ f;:(vo,vt,'" ,vn)·JRn
n \( )2AV'-V' 1 n

. tf;(vn)exp{ - t; 2(:i - t:=I) } ~~lmL(Vi)

= [(2?rt(tl -a)··· (tn-tn-d] -1 [ f;:(vo,'\ -~Ul+Vo,' .. ,'\-~Un +vo)­JRn
1 { ~(u'-U'_d2} n

. tf;(,\-2 Un + VO) exp - t;: 2(~; _ ;;-1) ~~1mL(Ui)

= [ Fm(,\-~x" + VO) tf;('\-~x(b) + vo)dmw(x)
lCo[a,b)

where Uo = 0 and Vo = ei that is,

Next we will show that lim (InFm)tf;, 4» exists and equals
11"11-0

(h.(Fm)tf;, 4» for ,\ in C+. For ,\ in R+ and for tf;, 4> in L2(R),

lim (I"(Fm).I. "")
11"11-0'\ <r, <r

= lim [(InF m )tf;)(e) 4>(e) dmL (e)
""II-olR

= lim [[ F m(,\-1 x,,+e) tf;P-1 x (b) +0 4>(e) dmw(x) dmLCO
11"11-0 lR lCo[a,b]
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(I) { lim ( Fm(.~-1XCT+e)¢(A-1X(b)+e)4>(e)dm",(x)dmL(e)
J R 11,,-/1_0 JCo[a,b]

(II) ({ lim Fm(A-lXCT + e) ¢(A-ix(b) + e) 4>(e) dm",(x) dmL(e)
J R JCo[a,b] 11,,-11-0

(I!:Pl ( Fm(A-~X+e) ¢(A-!x(b)+e) 4>(e) dmw(x) dmL(e)
RJCo[a,b]

=L(I.x(Fm)1/J)(e)4>(e) dmL(e)

= (I.x(Fm)1/J,4».

Steps (I) and (II) result from the dominated convergence Theorem since
IFffl(A-i xCT + e)1 ~ (II0!lool:,,)ffl and l1/Jp-!x(b) + e)1 is Wiener inte­
grable. Step (II I) is obtained from the fact that

since1 8(s, XCT(S» d'l(s) ~ ( 118(s, ·)1100 dl71l(s) < +00, and 8(s, x(s»)
[a,~ J[a,b]

is continuous for 71-a.e. s in [a, b] from Lemma 6.
Using the Morera's Theorem, we can conclude that (If(Fm)¢, 4» is

holomorphic for A in C+ and so If(Fm)1/J is holomorphic for A in C+
because the uniform analyticity is equivalent to the weak analyticity [8
; p 189].

Consider the sequence {If(Fm )¢} of holomorphic functions. It is
obvious that IIIf(Fffl)¢1I ~ (1I8I1oo1:,,)mll1/J!I. Let {An} be a sequence
of distinct points of ~ such that lim An = A in ~. Then there

n-oo
exists lim (If (~)¢, 4» for each 4> in L2(R) and for each n in N.

11,,-11-0 n

Therefore there exists the operator-valued sequential function space in­
tegral I~eq(Fffl) such that (I~eq(Ftn )1/J, 4» = lim (If(F

ffl
)¢, 4» and

IICTII--O
I~eq (Fm)¢ is holomorphic by Lemma 8. It follows from the uniqueness
Theorem for a holomorphic function [ 3 ; p 97] that I~eq(Fm) = I!n(Fm)
for A in C+.

THEOREM 10. Let q : a = to < t 1 < t2 < ... < t n = b be a given
partition of [a, b]. Let 8 be in L~l:" and let F be defined as in Theorem
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9. H.,., is continuous on [a, b); that is, ,,({T}) = 0 for each. T in [a, b), then
for.\ in C+ and for.,p in L 2(R), InFm).,p is in .e(L2 (R» and

where d[t'_l,t,),k, = {(Si-1,l,Si-1,2,'" ,Si-1,k,) E [fi_1,ti)k" fi-1 <
Si-1,1 < Si-1,2 < ... < S'-l,k, < f,} for i = 1,2, ... , n and the composi­
tion operator,
.efT = 9(SO,1)09(sO,2)0" '09(SO,k1)OC~ 09(Sl,1)09(Sl,2)0" '09(Sl,k2 )0

'1-'0

C_A_ 0" ·oC h 09(Sn-1,1)09(sn_1,2)0" '09(Sn_1,k,.)OC A
t2- t l tn_1-tn_2 t n -t n _1

for (Si-l,1,Si-1,2,'" ,Si-1,k,) in d[t'_1,t,),k,. Moreover

Proof. Let .\ be in C+ and let .,p be in L 2 (R). Then
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(3)X'i[(27l")n(tl-a) ... (tn-tn_d]-~ f :E mI·
JR" k1+k2+...+k,,=m

ki~O

~
n ki k

· " nnO(Si-l v,Ui-l)d.X X7](Si-l,v)t!'(Un)'
, ,=lv=l

.II ~[li-l>li)'''i i=lv=l
1=1

{ ~..\(Ui-Ui-l?}dX ()
· exp - ~ 2(t. _ t. 1) i=lmL Ui

i=l ' ,-

~m! :E ~" X'i [(27l"t(tl - a)··· (tn - tn-d] -~.
k1+k2+..·+k,,=m .n~[ti_1,ti),"i

1=1
ki;:::O

n k· n 2

1nn' ""' ..\(u· - u· t) n
· O(Si-l,V,Ui-t}t!'(un)exp{-~ 2('.- ~-) }di-!lmL(ui)'

R"i=lv=l i=l t, t'-l
n ki

· dX X 7](Si-l v)
i=lv=l '

(5) ~ f n ki
=m! L.J Jf ~ (£tTot!')(~)di-!lV-!l7](Si-l,v)

k1+k2+···+k,,=m .II [li_1,li),"i
1=1

ki;:::O

where Uo =~. Step (1) result from the continuity of 7] and the defini­
tion of If(pm). By the multinomial expansion, we have Step (2). Let
AO',,8 = {(Si-l,1,Si-l,2,··· ,Si-l,kJ E [ti_l,ti)kilsi_l,O' = Si-l,,8}. Then

ki
by the Fubini's Theorem, AO',8 is a X 7](Si-l vr null set. Let Pki be, v=l '
the set of all permutations of {1, 2,," , ki} and let for T in Pki' .6.T(ki) =

{(Si-l,1,Si-l,2,··· ,Si-l,ki) E [ti_bti)kil ti-l < Si-l,T(l) < Si-l,T(2) <
... <Si-l,T(ki) <til· Then [ti_l,ti)ki = [ U .6.T (kdJU[ U AO',,8].

TEP"i 1 $O'#,8".5.ki
Since the integrand is invariant under permutations of s-variables, the in­
tegrals over the kif simplexes are equal [4]. Hence Step (3) follows. From
the Fubini's Theorem, we obtain Step (4) which will be justified below
in conjunction with the proof of the norm estimate. Using Definitions 1
and 3, Step (5) is valid.
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(~)(f 1I0(s)1I dl1Jl(s») m 1It/J1I
J[a,b)

(V) m
~ (1I01l001:q) 1It/J1I
<+00

Step (I) follows from the Remark (1) of Definition 1 and the generalized
Minkowski's inequality. Steps (II),(III) and (IV) follow from the reversed
process of the calculation above. From the Remark (3) of Definition 3,
we have Step (V). By the result above, we have If(Fm)t/J is in L2(R);
i.e., If(Fm)t/J is in .c(L2(R).

Finally, letting F(x) = 1 1I 0(s, ·)1100 dl17l(s), we have (If(F)It/JI)(~)
[a,b1

~ II 011 ool:qC...,L It/JI(~). This justifies the use of the Fubini's Theorem in
h-a

Step (4) above.

In [4 ; p 22], it is shown that for Fm(x) = (J(a,b) O(s,x(s») d17(S») m
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on x in e[a, b], I~n(Fm) exists for A in ct and

where d m = {(Sl,S2,'" ,sm) E (a,b)ml a < Sl < S2 < ... < Sm < b}
and

for (Sl,S2,'" ,Sm) in d m •

From the result above and Theorems 9 and 10, we have the following
Theorem;

THEOREM 11. Under the same assumptions and notations as in the
above,

DEFINITION 12. For fJ in L~1:l1' let Me be the set of all functionals
G on 8[a, b] of the form

00
such that g(z) = L amzm is an analytic function with the radius of

m=O
convergence greater than IIfJIl001:'1' For G in Me, we define the norm of
G 00

IIGII = L laml(llfJIl001:'1)m.
m=O

REMARK. We can easily check that (Me, II . II) is a normed linear
space for each fJ in L~l:'1'



132 Kul Phyo Hong

THEOREM 13. Let G be in Me such that

00
Then for>. in C+, I~e'l(G) exists in .c(L2(R» and equals L amI~eq(Fm)

m=O

in the uniform operator topology where F(x) is given as in Theorem 9.

Proof. Let >. be in C+ and let q : a = to < tl < t2 < ... < t n = b be
a given partition of [a, b]. Then

Steps (1) and (3) result from the definition of the operator-valued se­
quential function space integral. Since the integrand in the right-hand
side of the·equatity (1) is domiriatea by

f;. lamIOI911~1")mexp{- t (Re~t~u~~::),)2}l.p(Un)l,

we obtain Step (2) from the dominated convergence Theorem. Let t/J00
and tP be in L2(R). Because L lam/(1I811001:'1)m11t/JlllltPll is a convergent

m=O
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00

series, the double sequence { 2: am (If(Fm)t/J, 4» } converges uniformly
m=O

for k in N [2 ; p 28]; that is,

k 00

lim lim L: am (If(Fm)tfJ, 4» = lim 2: am (l!(Fm)tfJ, 4».
k ......oo 1117'11 ......0 m=O 1117'11......0 m=O

By the previous results, we have
00

(2: amI~elJ(Fm)tfJ, 4»
m=O

k

= lim (L: am lim If(Fm)tfJ,4»
1:......00 m=O 110'11 ......0

00

= lim (2: amIf(Fm)tfJ, 4»
1117'11......0 m=O

= lim (l!(G)tfJ, 4» for tfJ,4> in L2(R).
1117'11 ......0

Hence I~elJ(G) = w - limIf(G) exists and we obtain
1117'11 ......0

00

I~elJ(G) = L: amI~elJ(Fm).
m=O

We have the following corollary directly from Theorems 10 and 13 by

letting am = ~ in the infinite series representation of G in Ms.
m.

COROLLARY 14. For 8 in L~1:I" let

H(x) = exp(j 8(s,x(s» d'1(s») on S[a,b].
[a,b]

Then I~eq(H) exists for A in C+. If '1 is continuous on [a, b], then
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where LiT is as in Theorem 10.

For 6 in L~l:'1 and for ,\ in C+, consider a mapping 1>..,9 : M9 --+

L(L2(R») with I).,9(G) = I~eq(G) for G in M9. Then by the elementary
properties of integration, 1).,9 is linear.

THEOREM 15. For'\ in C+ and for 6 in L~l:'1' 1>..,9 is a bounded
linear operator with the norm 1111).,9111 ~ 1.

00

Proof. Since III).,9(G)!1 ~ L lam l(1I6I1oo1:'1) m for
m=O

G(x) = f am (1 6(s,x(s») dl1(S») m

m=O [a,b]

in M" from the definition of IIGII, we have

1111).,,111 = sup III>..,9(G)1I ~ l.
IIGII#O IIGil
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