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EXISTENCE THEOREM OF AN OPERATOR-VALUED
SEQUENTIAL FUNCTION SPACE INTEGRAL

KuL Puyo HoneG

In this paper we prove that an operator-valued sequential function
space integral exists under some conditions and we investigate its prop-
erties. First of all, we present some necessary notations and definitions.

Let N,R and R} denote the set of all positive integers, the set of
all real numbers and the set of all positive real numbers, respectively.
Let C,C+ and Cjdenote, respectively, the set of all complex numbers,
the set of all complex numbers with positive real part and the set of
all nonzero complex numbers with nonnegative real part. Let Cla,d]
denote the space of all real-valued continuous functions on [a, b] and let
Cola, b] depote-the subspace of C[a, b] which vanishes at a; that is, the
associated Wiener space. m,, will denote Wiener measure on Cy [a b).
In fact, every element y in C[a, b] has a unique representation y = = + £
where z in Co[a, b] and ¢ in R. Let S|a, b] denote the space of all piecewise
continuous functions on [a,b]. In this paper, we will be concerned with
only the uniform topologies on Cla, b}, Cola,b] and S|a,b], and n will
denote a Borel measure on [a, b]. Let L?(R) be the space of all C-valued
Borel measurable functions on R which is square integrable with respect
to Lebesgue measure m on R and let £(L%(R)) denote the space of all
bounded linear operators from L%(R) into itself.

DEFINITION 1. For A in C%, the operator € from L?(R) into itself
is defined by

/\(30 £’

©)© =2 [ p@)em{ - Yims(2)

where 1 in L?(R) and A? takes a nonnegative real part.
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REMARKS. (1) C, is a bounded linear operator from L*(R) into itself
with ||Call < 1[5; p 776 ] and {Ci| X € C+J{0}} is a holomorphic
semigroup where C), is the identity mapif A=0[8].

(2) For ¢ in Ry, C¥; = Ci, where Cf,q is the adjoint operator of
C—zq [5 P 776]

DEFINITION 2. The mixed norm space L3;., is defined by the space
of all C—valued Borel measurable functions 4 on [a, ] x R such that

1Bllootn = /[ 1065 Modnl() < oo

and 6 is |n| x my, -almost everywhere (a.e.) continuous on {a, b] X R where
7| is the total variation measure of 7.

REMARKS. (1) J|6(s, )|l is 2 Borel measurable function of s in [a, b].
(2) Clearly L7;., equipped with the norm |}-[joo1:, becomes a normed
linear space but not a Banach space.

DEFINITION 3. For s in [a,b] and for § in L3, ,.,, we define the mul-
tiplication operator 8(s) from L?(R) into itself by

(6(s)¥)(€) = 8(s,£)¥(§)  forpin L*(R).

REMARKS. (1) The operator 6(s) is well-defined for n-a.e. s in [a, b]

[4;p 8]
(2) 6(s) is a strongly measurable function of s in [a,d] [ 8 ].
3) 0(3) is a bounded linear operator with ||0(s)]] = ||8(s,)jec for

n-a.e.s in [a, b] [6 ; p146, 4 ; p9].

Leto:a=1% <t <t <:.- <t, =b be any partition of [a, ],
and the norm of o, denoted by ||o||, equals maz (ti —ti—1). Forz in
=1,y yn

Cla, b], we define

N = :L’(t,‘_l) f i <t<i; (i=1,2,'-~,n)
M=V, i t=b
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If o is given as in the above and {vo,v1,--- ,v,} is any set of (n+1) real
numbers, we define the function

Vi1 if i1<t<t; (1=1,2,---,n)
2(0;v0,01,+ ,Up;t) = v $ 1eb
n - 0.

Clearly, z, and z(o;vp,v1, - ,Vn;t) are in Sla,bl. And for a given
functional F on Sla,b], Fs(ve,v1,- - ,vy,) is given by

f"(x(to)’z(tl)s az(tﬂ))E F[Z(o‘;z(to),z(tl),-~- »Z(tn); )]

for z in Cla, b].

Let 6 be in L? and let o be given as in the above. Let

ocol:y

F(z)= / 0(s,z(s)) Jn(s) for z in Sla, b].
[a,8]

Then F is well-defined on Sia, b]. In fact,

fo(z(t0), z(t1),- - - ,z(tn))= Z/ (s,2(ti—1)) dn(s)+6(b, z(b))n({d}).

=1 tt 1 ytc

Hence for A in R4 and for each ¢ in L?(R), by the Wiener integration
formula and the change of variables v; = A=3u; +vg (i = 1,2,- -+ ,n), we
have

A% [(2“)n(tl—a)“'(tn—tn—l) %/ fo(vo,v1,--- vn)¢(vn)

A(vi —vi
-exp{ Z z((t — 3 deL(v,)

1
=[@r)"(ti—a) - (tn—tn-1)] * f,(vo,r%u1+vo,--- JA U, )

(A" Tu, + vo)exp{ Z (212; _u;’ 11)) }dX mi(u;)

=/ F(A"%z, + vp) ¢(/\_5:t(b) +vg)dmy(z) where wug=0.
Cola,b]

Now we present the following definitions from the motivation specified
above.
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DEFINITION 4. Let A be in C4 and let ¢ be in L?(R). Let F be a
C-valued functional on Sfa,b]. For a given partition ¢ : a = {5 < #; <
-+ < t, = b, the operator IJ(F) is defined by the formula

(I5(FW)(E) = 2% [(27r)"(t1—a)---(tn—t.._l)]"*‘/ Solvo,01,7+ )

(vn) expf - Z /\z((vt _Z’,_i )) YdX mi(v)

where vo = £, fo(vo,v1,--+ ,vn) = F[Z(G;‘Uo,vl, *tt sy Un; )] and
z(0;v9,v1,- -+ ,Up;t) is defined as in the above. ( If n is odd, we always
choose A=% with nonnegative real part). Let A be in C; and let F' be
a functional on Sla, b] such that I{(F) exists for ¢ in L?(R) and for
every partition o of [a,b]. If

Jim [ (IEW)EFG dnsle)

exists for all ¢, ¢ in L%(R), then this weak limit, w — imIj(F) is called

lell—o
the operator-valued sequential function space integral of F for A in C*
and denoted by I;*(F); ie.,

(BFy8,9) = fim (IR(FYb,4)

where the parenthesis (-,-) denotes inner product.

DEFINITION 5. Let A be in Ry and let ¢ be in L?(R). Let F be a
C-valued functional on Cla,b]. Then the operator In(F') is defined by
the Wiener integral

(EW© = [ PO+ 07120) + ima(),
oia,
For A in C4, the operator-valued analytic function space integral of F',
I$™(F) is defined to be the operator-valued function of A which agree
with In(F') for A in Ry and is analytic on Cj.

By the Fubini’s Theorem and the Wiener integration formula,we have
the following two lemmas [1]
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LEMMA 6. If0(s,u) is n X my-a.e. continuous on [a,b] x R, then for
almost all = in Cola, b}, 0(s, z(s)) is continuous for n-a.e. s in [a, b].

LEMMA 7. Let 6(s,u) benxmy-a.e. continuous on [a, b} x R and let A
bein Ry. Then for g xmy-a.e. (z,¢) in Cola,b] x R, (s, \"2z(s)+¢)

is continuous for n-a.e. s in [a,b).
From [1; p 532], we have the following ;

LEMMA 8. Let {z.(z)} be a sequence of vector-valued holomorphic
functions in a domain D of the complex plane whose values lie in a
separable Hilbert space H. Let ||z,(2)|| < B for z in D. Let {z} be
a sequence of distinct points of D such that klingo zr =29 iIn D. Let

li_)m (zx(2k),y) exist for each y in H and each k. Then there exists z(z)
?n ;Io such that nlim (za(2),y) = (2(2),y) and z(2) is holomorphic in D
and nh—{:%o (:v,,(z),yj)o:: (:z:(z),y) uniformly on any compact subset of D
for each y in H.

THEOREM 9. Let 6 be in LY., and let

F(z) = /[

Then the operator-valued sequential function space integral of F™,
I;*%(F™) exists for A in Cy and for m in N, and (I3*9(F™)¢, ¢) =
lim (IJ(F™Y,¢) for all v, ¢ in L*(R). Moreover, I;*9(F™) = I¢"(F™).

ltelt—0

. 6(s, z(s)) dn(s) for z in Sla,b].

b

Proof. Let 0 :a =1y <t <--- <tp, = b be a given partition of [a, b].
Then F'™ is well-defined on Sia, b]. In fact,

f;n(z(to)vx(tl)7 tee ,.'L‘(tn))
=F" [Z(a; z(to), z(t1),- -+ ,2(tn); )]

=[X [ Oersttecs) dnte) + (=) )]
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Thus we have formally that for A in R4 and for 4 in L?(R),

(IZ(F™)p)(€)
=A%[(27r)"(t1—a)"'(tn'—tﬂ 1) %/ f (voavl’ T,V )
a3 SR i
=[(27r)”(t1 —a)--- (t,,—t,,_l) / FI(vo, A3y, +vg,- -, /\‘Jz'un+'vg)'

. ¢(/\‘%un + vp) exp{ Z (zu(; _u;~—11)) }dX mr(u;)

= [ PO, +00) O a(d) 4 w0)dm(2)
Cola,b]

where up = 0 and vp = £; that is,
(IZE™W)(E) = (INFrW)(E)  for in Ry

Next we will show that | li“mo(ij(F”‘):,b, ¢) exists and equals
(IN(F™)4, ¢) for X in Cy. For X in Ry and for 4, ¢ in L*(R),
IZ(F™Yp, 6

Jm (E™ ), ¢)

"o ll—»o/ (IS(F™ ) (€)$() dmi(£)
= ",,“1.1_1,0/ /Co[a,b] Fm()\_zza + &) P(A"2z(d) + £) #(¢) dmy,(z) dmp(€)
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I . - - 7Y
D[ dm [ FmOcia, 4 O Ha(8) + ) FE) dmule) dma(©)
R ol =0 Joya,b]

(D /R /C Km F™(A" 3z, +€) (A" 22(b) + €) $(E) dmu(z) dmr(€)

[a,8] llel—0

(D / / Fr(A~3z +€) p(A~ ¥ 2(b) + €) $(6) dmo(z) dmy(€)
R JCola,b}

- /R (I(F™))(€)3(E) dm(€)

Steps (I) and (II) result from the dominated convergence Theorem since
FP (A2 20 + £)] < (I6lloctn)™ and (A 22(b) + )] is Wiener inte-
grable. Step (III) is obtained from the fact that

lim F™(z,)=F™
i F™(z0) (2)

since/ 8(s,z,(s)) dn(s) < / 16(s, Moo d|nl(s) < o0, and 8(s, z(s))
[a,8] [,8]

b

is continuous for n-a.e. s in [a, b] from Lemma 6.

Using the Morera’s Theorem, we can conclude that (I(F™)y,¢) is
holomorphic for A in C4 and so I§(F™)y is holomorphic for A in Cy
because the uniform analyticity is equivalent to the weak analyticity [8
; p 189).

Consider the sequence {I{(F™)y} of holomorphic functions. It is
obvious that |[I{(F™)Y|| < (J10llcor:n)™¥]l. Let {An} be a sequence
of distinct points of Ry such that nll’ngo Ap = A in Ry. Then there

exists "]i“mo(I"n(F'”)zl), #) for each ¢ in L*(R) and for each n in N.

Therefore there exists the operator-valued sequential function space in-

tegral I;*¥(F™) such that (I3*/(F™)y,¢) = "}’i"ﬂ_l'o(Ig(Fm)lb, ¢) and

I;*%(F™)y is holomorphic by Lemma 8. It follows from the uniqueness
Theorem for a holomorphic function [ 3 ; p 97 ] that I3°/(F™) = I§™(F™)
for A in C}.

THEOREM 10. Let 0 :a =1ty < t) <ta < --- < t, = b be a given

partition of [a,b]. Let 8 be in LY., and let F' be defined as in Theorem
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9. If n is continuous on [a, b); that is, n({7}) = 0 for each 7 in [a, ], then
for A in C and for ¢ in L*(R), I{(F™ Yy is in L(L*(R)) and

(mEmw)©=m 3 / (€00 9)(©@4F Zntso1.)

ky+kot-thkp=m A[‘s 1:t:) kg
k; >0

where A[‘i-x,fi),’;i = {(3"-1,1’3"—1,% oty 8ic1k) € [ti—l’ti)kil ti1 <
8i—11 < 8i—12 <+ < Si—1k; < t,-} fori=1,2,--- ,n and the composi-
tion operator,

Ec = 0(80 1)00(30 2)0 00(30 kl)OC lx 3 09(31 1)00(81 2)0 00(31 kz)O

C_a -c0C___a oG(sn_l 1)00(sa-12)0--00(sp_1,2,)0C__a
‘2—‘1 tn—1=tn— n=-tn_1

for (8i-1,1,8i-1,2,"" s,_l,k‘) in A, _, e,k - Moreover

"IK(F"‘)" < ("0"001:11)’” for A in C+.

Proof. Let A be in C and let 9 be in L2(R). Then

(IZEF™W)(€)
(l))"[(27f)"(t1—a)"'(tn——tn-1)]—1" / "[Z . Gt(s,u;_l)dﬂ(s)]m
- p(un) exp{— g:\%:—_—?—i—l;—} dX mL(u,)
m!
AZ[2m)"(t1—a)- - (tn —tn-1)]” /I; kl+k2+ . _m.
ki>0
’\(ul u:—l) L ]
11 -/[t._al(s u.—l)dﬂ(S)) ¥(un)exp{- Z 2t — 1) }dX mp(us)
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D33 [(21)"(t1 — @)+ (bn — tur)] "} /R ml-

k1+ka+-- +k,.-m
ki >0

n kg

. /H HHG(S' 1,y U:—l)dX -X 77(3'-1 ’0)1/)(“")

A[‘. 1,t:),k; 1=1ov=1

-exp{— Z -/%%'—_T'_l)—-} dX mL(u,)

A / . AH[@0) (b —a) e (tn— taer)] -

kytkototka=m ¥ AR 1000

=

k>0
n k; 4 A(‘LL, ‘u,_l) d)n( '
/gg (8i—1,0, 1) (un) exp{— Z St — tia) }dX mp(ui)-

dX X n(si-1,0)

i=lv=1

5 n k;
Dy /. (Lo 0p)(E)dX X n(si_s,»)
1=]lv=1
k1+k2+...+k“=m iglA[ti—lvti)'kl'
ki>0
where up = £. Step (1) result from the continuity of n and the defini-
tion of I{(F™). By the multinomial expa.nsion, we have Step (2). Let

Aa,ﬁ = {(Si—l,l, 8i—-1,2y""" 5 8i—1,k; ) € [tt-l,tz) .'51 l,a = Si—1 ﬂ} Then

by the Fubini’s Theorem, A, g is a X n(s, 1,»)— null set. Let Pi; be
the set of all permutations of {1,2,- k } and let for 7 in Pk;, Arx;) =
{(3:—1 1,8i—1,25" " y8i-1 k.) € [t:—lat )kl tic1 < Si-1 (1) < Sic1(2) <
s < Sim1,r(k;) < ti } Then ,_l,t)k'— U A.,-(k) U[ U Aa,ﬂ].
TEP:; 1<a#p<k;
Since the integrand is invariant under permuta.tions of s-variables, the in-
tegrals over the k;! simplexes are equal [4]. Hence Step (3) follows. From
the Fubini’s Theorem, we obtain Step (4) which will be justified below
in conjunction with the proof of the norm estimate. Using Definitions 1

and 3, Step (5) is valid.
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Moreover

MXCE™ )l

ok

=|Im! /“ ([,, o t/))dX X n(si-1,0)
i=1v=1

kytkatedka=m ¥ LBt _pe08

ki>0

n k;
<mt Y /H TTTT16GicsMelia, X Inisicse)
[tn 1,85) k¢

kit ks+-tkpn=m i t=lv=1
ki >0
n k;

an !
Z ¥ -,;;-!-E;T—-Fkl ko! - k,,!/ﬁ I

ki+ka+-+tkpn=m izlA[‘i-x,‘i)”‘i t=lv=1

k; >0
- 16(si-a, v)lllll/)lld{flv?f Ini(si-1,0)
= (f tomani)”
= nl(s)) Nl
k1+k2§i-kn kl'k2 “ka ‘H [tic1,e)) )
k: >0

v ( /[a,b) 16(s)]] dInI(S))m||¢||

V) m
< (10lloor:) N2l

<+

Step (I) follows from the Remark (1) of Definition 1 and the generalized
Minkowski’s inequality. Steps (II),(III) and (IV) follow from the reversed
process of the calculation above. From the Remark (3) of Definition 3,
we have Step (V). By the result above, we have I{(F™)¢ is in L*(R);
ie., IJ(F™)y is in L(L*(R)).

Finally, letting FY(z) = /[ p 18(s, -)lloo dlnl(s), we have (I{(F)|%l)(€)
< 18]loo1:4C. 2 |1/)|(§) This justifies the use of the Fubini’s Theorem in
Step (4) above

In {4 ; p 22}, it is shown that for F™(z) = (f(a’b) (s, z(s)) dn(s))m
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on z in Cla, b], I{*(F™) exists for A in C§ and
m
IM(F™) = m!/ £d_)(1n(s;)
Am =

where A,, = {(31,52,--- y$m) € (@, )™ a<s1 <s3 < <8y < b}
and
L=C_s_ 06(s1)oC_a_o06(s2)o---0C_» oe(sm)oC A
1 —a 89 =81 Sm =S8y —8&m
for (s1,82,° "+ ,8m) in Ap.
From the result above and Theorems 9 and 10, we have the following
Theorem ;

THEOREM 11. Under the same assumptions and notations as in the
above,

w — lim /n CadX Xn(s,_l t,)-—/ [,d)nizn(s,-).
ol =0 1k, 4-2:+k =m ¥ I Bt en =17 A, =
k>0

DEFINITION 12. For § in LZ,.,, let My be the set of all functionals
G on Sla, b] of the form

oo

G(z)= Z Gm (/[ ; 0(s,z(s)) dr](s))m

m=0 a,

[e o]
such that g(z) = z amz™ is an analytic function with the radius of
m=0
convergence greater than ||0||co1:,. For G in My, we define the norm of

G oo
IGI = lam| (16llcor:0)™

m=0

REMARK. We can easily check that (My,]| - ||) is a normed linear

space for each 8 in LZ,.,.
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THEOREM 13. Let G be in Mg such that

G(z) = Z am / (s, z(s)) dn(s))

mz==0

Then for A in Cy., I;*(G) exists in L(L*(R)) and equals » _ amI3(F™)
m=0
in the uniform operator topology where F(z) is given as in Theorem 9.

Proof. Let A\beinCy andletc:a=ty <t; <ta <---<tp, =bbe
a given partition of [a,b]. Then
(K@)

(l)z\% [(27r)"(t1 —a)-- (tn“tn-—l)]— / Z a’"{Z/ 0(5 ui-1) dn(s)

m=0 i=1 J[ti-1,8)

+005,un)((3)} " $(un) exp{ - Z"é}‘;’ 21l ) 4§ ()

(2=) Z am\? [(27(')"(751— a)-"(tn—tn-—l) %/ {Z/ 6(s, "‘8—1)

m=0 =1 ful ,tu

() + 6(b, un)n({B])} (uun) exp{ - Z R tiotl ) % mau)
23" an(FEWE)
m=0

Steps (1) and (3) result from the definition of the operator-valued se-
quential function space integral. Since the mtegra.nd in the nght~ha,nd
side of the equality (1) is dominated by

5" foml (IBlet)™ exp{— 3 B Crry 41l ),

m=0 =1

we obtain Step (2) from the dominated convergence Theorem. Let 3
oo

and ¢ be in L?(R). Because Z |am|(||0|lw1:,,)m||1,b||”¢|| is a convergent

m=0
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series, the double sequence { Z am (I(F™ ), ¢)} converges uniformly
m=0
for k in N {2 ; p 28]; that is,
k oo
lim Z am (IL(F™ ), 6) = Z am (I{(F™), 9)-

i .
k—ooflofl—0 & lle II-+0

By the previous results, we have

(3 a3 E™)w.9)

m=0
k
= kh_{x:o(';) an, Illillrgo IZ(F™), ¢)

- tim, (X an X6,

= lim ((G),¢)  for $,¢in IX(R)

Hence I3*(G) = uivl " EmI{(G) exists and we obtain
o||l—0

LG =) anI3UF™).

m=0

We have the following corollary directly from Theorems 10 and 13 by
letting a,, = ml in the infinite series representation of G in M.

COROLLARY 14. For § in L7, let
H(z)= exp(/ (s, z(s)) dn(s)) on Sa,b).
[a,b]

Then I;*¥(H) exists for A in Cy. If 5 is continuous on [a,b], then

LY(H / ,C,,dX Xn Si—1,0
(H) = w -~ ls my Y [ (5i-1,0)

m=0 ky+kz+---+kp=m
ki>0
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where L, is as in Theorem 10.

For § in L., and for A in C}, consider a mapping Ing : Mg —
L(L*(R)) with Iy ¢(G) = I}*(G) for G in M. Then by the elementary
properties of integration, I ¢ is linear.

THEOREM 15. For A in C; and for 8 in L7, ;.,, I\ ¢ is a bounded
linear operator with the norm |||I 6]}| < 1.

oo

Proof. Since ||I) o(G)|| < Z |arm| (18]l oo1:9) ™ for

m=0

[= ]

G(z) = Z am (‘/[a ; 6(s,z(s)) dn(.s))m

m=0

in My, from the definition of ||G||, we have

IHIX,0”|= sup M <1
icizzo Gl
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