THE EFFECTS OF NIFEDIPINE ON THE ACTIVITY OF HUMAN GINGIVAL FIBROBLAST

Nifedipine이 인체 치은섬유모세포의 세포활성에 미치는 효과

  • Choi, Jong-Gil (Dept. of Periodontology, College of Dentistry, Wonkwang University) ;
  • Kim, Jai-Hun (Dept. of Periodontology, College of Dentistry, Wonkwang University) ;
  • Shin, Hyung-Shik (Dept. of Periodontology, College of Dentistry, Wonkwang University)
  • 최종길 (원광대학교 치과대학 치주과학교실) ;
  • 김재현 (원광대학교 치과대학 치주과학교실) ;
  • 신형식 (원광대학교 치과대학 치주과학교실)
  • Published : 1993.11.30

Abstract

Gingiva is remarkly sensitive to certain drugs. Especially, long term use of phentoin, dihydropyrydine (including nifedipine), cyclosporin and other drugs can be lead to pathologic changes in gingival tissue, especially in terms of proliferation of epithelium and connective tissue. Recent study in terms of proliferation of epithelium and connective tissue. Recent study is focused on the inhibition of drug-induced gingival hyperplasia by using medicaments. The purpose of this study was to investigate on the pharmacological effects of nifedipine, retinoic acid and glycyrrhetini acid to the activity in human gingival fibroblast. Human gingival fibroblasts were cultured from the healthy gingiva of orthodontic patients. Gingival fibroblasts were trypsinized and cultured in growth medium added $5{\mu}g/ml$ of nifedipine, $10^{+7}M$ of retinoic acid and glycyrrhetinic acid. The passage number of cultured fibroblasts were between fifth and eighth. The cell morphology was examined by inverted microscope and the cell acitivity was measured by the MTT assay. Nifedipine at the concentration of $5{\mu}g/ml$ was revealed significantly effective to increase the cell activity and lipopolysaccharide was cofactor to increase cell activity in the presence of nifedipine. However, retinoic acid was significantly effective on the globular change of cell morphology and loss of cell process regardless of the presence of nifedipine and LPS. Cell activity was significantly decreased by the glycyrrhetinic acid at the concentration of $10^-M$ regardless of the presence of nifedipine and LPS. These results suggested that the increased cell activity by nifedipine might be modulated by retinoic acid and glycyrrhetinic acid. Further study is needed to clarify on their toxicological effects during cellular modulation and mRNA expression change.

Keywords