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Abstract

The auxiliary principle technique is used to prove the uniqueness and
the existence of solutions for a class of nonlinear variational inequalities
and suggest an innovative iterative algorithm for computing the approx-
imate solution of variational inequalities. Error estimates for the finite
element approximation of the solution of variational inequalities are de-
rived, which refine the previous known results. An example is given to
illustrate the applications of the results obtained. Several special cases
are considered and studied.

1. Introduction

Variational inequality theory has become an effective technique for
studying a wide class of problems arising in various branches of math-
ematical and engineering sciences in a natrual, unified and general frame-
work. This theory has been generalized and extended in several directions
using new and powerful methods that have led to the solutions of basic
and fundamental problems thought to be in accessible proviously. Some
of these developments have made mutually enriching contacts with other
areas of pure and applied sciences. Variational inequality theory as devel-
oped by the Italian and French schools in the early 1960s and thereafter,
constituted a significant extension of the variational principles. It has
been shown recently that the developement of the variational inequality
theory led to a number of advances in the study of contact problems in
solid mechanics, the general theory of transportation and economics equi-
librium and fluid flow through porous media etc. The variety of problems
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to which variational inequality techniques may be applied is impressive
and amply representative for the richness of the field. One of the charms
of this theory is that the location of the free boundary ( contact area ) be-
comes an instrinsic part of the solution and no special devices are needed
to locate it.

The development of the variational inequality theory can be viewed as
the simultaneous pursuits of two different lines of research during the last
two decades: On the one hands, it reveals the fundamental facts on the
qualitative behaviour of solutions ( regarding existence, uniqueness and
regularity ) to important classes of nonlinear boundary value problems;
on the other hand, it also provides a mean for developing highly efficient
new approximation and numerical methods to solve, for example, free
and moving boundary problems and complementarity problems. In most
cases, the issue of the existence of solutions to variational inequalities
related to the contact problems is an open question. Special cases have
been considered by Kikuchi and Oden (1], Noor {2, 3, 4], Glowinski, Lions
and Tremolieres [5] and Duvaut and Lions |6].

There is already in the literature a substantial number of iterative type
algorithms including the projection method for finding the numerical so-
lution of variational inequalities, see {1, 5, 6] and the reference therein.
It is worth mentioning that the scope of the projection algorithm is quite
limited due to the fact that it is very diffienlt to find the projection of
the space into the convex set except in very simple cases. Secondly, the
projection cannot be applied for other classes of variational inequalities of
type (3.1). These facts motivated Noor [2, 4] and Glowinski, Lions and
Tremolieres [5] to develop alternative methods to study the existence of
solution of variational inequalities. This approach deals with the auxiliary
variational inequalities. This approach deals with the auxiliary variational
inequality problem and proving that the solution of the auxiliary problem
is the solution of the variational inequality problem. It turns out that this
technique 1s equivalent to finding the minimum of the functional associ-
ated with the auxiliary variational inequality problem on the convex set in
the space. This technique provides us with a general framework to suggest
and analyze an innovative and novel iterative algorithm for computing the
solution of variational inequalities. For related work, see Cohen [7], where
he has shown that the auxiliary principle technique provides us a gen-
eral framework to describe and analyze many computational algorithms
ranging from gradient to decomposition / coordination algorithms.

Inspired and motivated by the research work going on in this field and
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related areas, we consider a class of nonlinear variational inequalities. Us-
ing the auxiliary principle technique of Noor [4] and Glowinski, Lions and
Tremolieres [5], we prove the existence of the unique solution of this class
and suggest a novel and general algorithm. Abstract error estimates are
obtained by using the finite element approximate solution of the class of
variational inequalities. An example is given to illustrate the techniques
and applications of the theory developed in this paper.

2. Preliminaries and formulations

Let H be a real Hilbert space with its dual space H', whose inner
product and norm are denoted by (-, ) and || - || respectively. The pairing
between elements of H' and H is denoted by (-,-}. Let M be a closed
convex nonempty subset of H.

Let T : H — H' be a continuous operator and f be a real-valued
continuous functional on H. We consider the functional,

(2.1) Iv] = (Tv,v) — 2f(v)

which is known as the energy (cost) functional. It is worth mentioning that
a wide class of linear and nonlinear problems arising in mathematical and
engineering sciences either arise or can be formulated in terms of funetional
of this form (2.1). Here one usually seeks to minimizes the functional I[v],
defined by (2.1) over a whole space or on a convex set in H, keeping in mind
whether the real-valued functional f is linear or nonlinear differentiable.
We point out that the whole theory of variational methods can be based
on the minimum of the functional 7[v].

We now consider the following cases, in which T is a linear and sym-
metric operator.

I. For given f € H’, it is known {1] that the minimum of I{v] on M in
H is equivalent to finding u € M such that
(2.2) (Tu,v—u) 2 (f,v—u), forallve M.

The inequality (2.2) is known as variational inequality.

IT. For a differentiable nonlinear function f, Noor [8] has proved that
the minimum of I{v] on M can be characterized by a class of variational
inequalities of the form

(2.3) (Tu,v—u) 2 (f',v—u), forallve M,
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where f'(u) is the Frecher differential of f at u. The inequality of type
(2.3) is called the mildly nonlinear variational inequality. For the existence
of the solution and error estimates; see Noor [8, 9]. Recently, it has been
shown by Panagiotopoulas [10] that unilateral problems with non-convex
potential can only be characterized by the inequality of type (2.3).

III. For a non-differentiable nonlinear functional f, the minimum of
I[v] on M can be characterized by a class of variational inequalities of the

type:
(24)  (Tu,v—u) + fi(v) = fi(w) 2 (f(u)yv —u), forallve M,

where f(u) = f1(u)+ f2(u), with f; non-differentiable and f, differentiable
functionals respectively, see Noor [11].

Clearly variational inequalities of type (2.4) are more general and in-
cludes (2.2), and (2.3) as special cases. It is also obvious from the above
facts that the nonlinear programming problems and variational inequal-
ities are equivalent. This interplay between variational inequalities and
nonlinear programming problems is very subtle and has been fruitful.
This equivalence has been used to suggest many unified and general algo-
rithms for various classes of complementarity problems, see Noor [12, 13,
14] and Ahn [15]. In fact, variational inequalities are more general than
and include many mathematical programming problems as special case.
However, in many important applications problems like (2.4) occur which
involve non- symmetric nonlinear operators 7 in mathematical models for
problems in engineering and physical sciences. This fact alone motivates
the interest of studying problem (2.4) on its owi, that is without assum-
ing “ a priori " that it comes out as an Euler inequality of an extremum
problem.

3. Existence Results

In this section, we study those conditions under which there does exist
a unique solution of more general vanational inequality of which (2.4) is
a special case.

Let us consider the following problem:

PROBLEM 3.1. Let T, A be nonlinear operators such that A(u) € H'.
If the functional j : H — R is convex, lower semi-continuous and proper,

then find u € M such that

(3.1) (Tu,v —v) + j(v) — j(u) 2 (A(u),v — u), for all v € M.
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It is obvious that variational inequalities of type (2.2) - (2.4) are special
cases of (3.1).
We also define the following concepts.

DEFINITION 3.1. The nonlinear operator T : M — H' is called:
(1) Strongly monotone, if there exists a constant a > 0 such that

(Tu - Tv,u —v) 2 alju ~v||2, forall u,v € M.
(2) Lipschitz continuous, if there exists a constant 8 > 0 such that
|Tu — Tv|| < Bllu—v||, forallu,ve M.
(3) Antimonotone, if for all u,v € M,

(Tu — Tv,u —v) <0.
It is obvious that strongly monotonicity implies monotonicity, but not
conversely. In particular, a < f3.
Finally, we define A, a canonical isomorphism from H' onto H, for all
f € H', such that

(3.2) (f,u) =(Af,u), forallve M.

Then ||A||lg =1 = ||A7Y|4.
We make the following hypothesis.

CoNDITION N. We assume that 4 < a, where a is the strongly mono-
tonicity constant of T snf + is the Lipschitz constant of the operator A.
We now state and prove the main result of this section.

THEOREM 3.1. Let T be a strongly monotone and Lipschitz continuous
operator. If the nonlinear operator A is Lipschitz continuous antimono-
tone, and condition N holds, then there exists a unique solution v € M
satisfying (3.1), where j(-) is convex, lower semi-continuous and proper
functional.

Proof.

(a) Uniqueness: Its proof is similar to that of Noor [2] and Glowinski,
Lions and Tremolieres [5].

(b) Existence: We now use the auxiliary principle technique of Noor [2,
4] to prove the existence of a solution of (3.1).
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For each u € M and p > 0, we consider the auxiliary problem of finding
w € M satisfying the variational inequality.

(3.3) (w,v—w)+pj(v)—pj(w) > (u,v—w)+p{A(u), v—w)—p(Tu, v—w),

Let wy,wy be two solutions of (3.3) related to u;,u; € M respectively.
It is enough to show that the mapping u — w has a fixed point belonging
to the closed convex set M in H satisfying (3.1). In other words, we have
to show that for all p well chosen,

lwr — wal| < 8lju; ~ uyf,

with 0 < 6 < 1, where 8 is independent of u; and us.
Taking v = w; (respectively w, ) in (3.3) related to u; (respectively us),
we obtain
(w1, wz —wi) + pj(wa) — pj(w1) 2 (u1, w2 — wy)
+p{A(uy),ws ~ wy) — p(Tuy, wz — wy).
(w2, w1 —w2) + pj(wi) — pj(wz) 2 (uz, w1 — wy)
+p(A(u1),w2 - ’w1> - [)(Tug, Wy — 'w1>.
Adding these inequalities and using (3.2), we have

(w1 — wa,wy —wy) < (ug — ug — pA(Tuy — Tuy), wy — wy)
+ p(A(A(u1) — A(uz)), 0y — wy)

Now using strongly monotonicity of T and Lipschitz continuity of T
and A, we have, (see Noor [16] for details),
llwy — wall < flur — uz — pA(Tuy — Tuz)|| + pl| A(ur) — A(ua)||

< (VT=2ap ¥ B + p)lls — ]
== 6”’“1 - UQ”,

where 8 = (/1 ~2ap+ 52p%) + py < 1 for py < 1 and 0 < p <3 Ha— 7),
by condition N.

This shows that the mapping u — w defined by (3.3) has a fixed point,
which is the solution of (3.1), the required result.
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REMARK 3.1. It is clear that for each u € K and p > 0, w € K
satisfying (3.3) is equivalent to finding the minimum of the functional
Livlon K,

Blo] = 3{0,0) + (p(Tu ~ A(w)) = u,) + pj(v),
which is the convex differentiable functional associated with the auxiliary
variational inequality (3.3).
Following the ideas of Noor [2,4] and Cohen [7], we propose and analyze
a general iterative algorithm.
For some u € K, we introduce the following general auxiliary problem
of finding the minimum of the functional Flw] on K in H, where

(3.4) Flw] = E(w) + (p(Tu ~ A(u)) — E'(u), w) + pj(w).

Here E(w) is a convex differentiable functional and p > 0 is a constant. It
is clear that the minimum of F[w], defined by (3.4) can be characterized
by a variational inequality

(3.5)

(E'(w), v—w)+pj(v)—j(w) > (E'(u), v—w)+p{A(u), v—w) - p(Tw, v—w),

forallv € K.

It is obvious that the auxiliary variational inequality (3.3) is a special
case of (3.5). We also note that if w = u, then w is a solution of the
variational inequality problem (3.1).

We note that in may applications, the auxiliary variational inequalities
(3.5) occur, which do not arise as a result of minimization problems. This
motivates the interest of studying problems (3.3) and (3.5) on its own, that
is without assuming ‘a priori ’ that these come out as an Euler inequality of
an extremum problem. The main motivation of this section is to suggest a
general auxiliary variational inequality problem, which includes (3.3) and
(3.5) as special cases.

AUXILIARY PRINCIPLE 3.1. For some w € K, we consider the general
auxiliary variational inequality problem of finding w € K such that

(M(w),v —w) + pj(v) — pj(v) — pj(w)

(3.6) > (M(u),v — w) + p(A(u),v — w) ~ p(Tu,v — w),
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for all v € K, where p > 0 is a constant and M is a nonlinear continuous
operator.

It is clear that the problems (3.3) and (3.5) can be derived from the
auxiliary problem (3.6). Obviously, if w = u, then w is a solution of the
nonlinear variational inequality problem (3.1).

Based on these observations, we now suggest and analyze the following
algorithm.

ALGORITHM 3.1.

(a) At n = 0, start with some initial wyg.

(b) At step n, solve the auxiliary problem (3.6) with v = w,. Let wy,
denote the solution of the problem (3.6).

(c) If ||wnt1 — wal| < €, for given € > 0 stop. Otherwise, repeat (b).

SPEcCIAL CASE 3.1.
L If j(v) = 0, then we have new proof for the existence of a solution of
a variational inequality

(Tu,v — u) > (A(u),v—u), forallve M.

For other proofs, see Noor [9, 11]
IL If A(u) = f then our result is the same as proved in [1], that is, find
u € M such that

(Tu,v —u) +j(v) — j(u) 2 (f,v—u), forallve M.

III. If A(u) = f € H, and j(v) = 0, then problem (3.1) becomes:
For given f € H', find u € M such that

(Tu,v —u) > (f,v—u), forallve M.

a problem originally considered and studied by Browder [17] and Hartman
and Stampacchia [18].

4. Abstract Error Estimates

We now derive a general error estimate for the finite element approxima-
tion of the solution of variational inequalities of type (3.1). Our estimates
are quite general. They hold for any finite dimensional subspace S} and
approximate constraint set M) and represent a significant improvement



Auxiliary Princeple and Error Estimates for Variational Inequalities 113

of all the estimates for corresponding elliptic variational inequalities. For
definiteness, we shall assume that there exists a Hilbert space U which
is densely and continuously embedded in the dual space H’'. It is then
possible to identify H with a subspace of U/’ that is dense in U’ by a
continuous injection.

In order to derive the error estimate for the approximate solutions for
variational inequalities of type (3.1). Let S, C H be a finite dimensional
subspace and M}, C H be a finite dimensional convex set. An approxima-
tion of (3.1) is that of finding u, € M, such that

(4.1) (Tup,vn — up) + g(va) —~ j(ur) 2 (Aup),vn — up),

With these hypotheses and preliminaries established, we can now derive
the following abstract error estimate.

THEOREM 4.1. Let u € M and u, € My, be the solutions of (3.1) and
(4.1) respectively. Let T be a strongly monotone and Lipschitz continuous
operator. If A is a Lipschitz continuous antimonotone operator, and Tu —
A(u) € U, then there exists a constant ¢ > 0 such that

(i) For My ¢ M
lu—unllor < e{llu=valla+lv—unrlla+lva—vija+(||A(w)=Tullv|lv—vallv
| A(us) = T(usllullus = vliv) + (o — unlly + llon —ulla)?},

(4.2) for allv € M,v, € M,

(ii) For M, C M,

lu—ualler < e{llu—vnlla + (| A@w) = Tullullu—vallo)? +(llu —valla)?

(4.3) for all vy, € M,

Proof. Since v € M and u, € M, are solutions of (3.1) and (4.1)
respectively so by adding these inequalities, we have

(Tu, Tu) + (Tun, Tua) £ (Tu,v) + (Tup,vn) + (A(u),u — v)
+ (A(un ), un —vn) = j(u) = j(un) + 3(v) + j(va).
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Subtracting (Tu, up) + (T'up, u). from both sides and rearranging terms,
we get

(4.4)

(Tu — Tup,u — up) < (Tu — Tup,v — up) + (Tu — Tup,u ~ vp)
+ (A(u) — A(up), vk — v) + {A(u) — Tu,u — v)
+

(A(up) = Tup,up —v) + j(v) = j(un) + j(vp) = ju

Since by assumption, Tu — A(u) € U, T is strongly monotone Lipschitz
continuous and A is Lipschitz continuous, so we obtain

allu = uall® < Bllu = uall(flv — wall + llv = valla) + vllw — vallullvs — v]jv-
+ | A(u) = Tullylju — vallor + || A(un) ~ Tunllvllun = vllvr
+&(llv — unllg + flow — ulln)-

Using the Young’s inequality.

1

b2
4¢ "’

ab <€ a® +

for positive a, b, and €> 0, we have the required result (4.5).
(ii) For M} C M, we obtain (4.3) from (4.2), by taking v = u, and
using the fact that ||vy — uplly < vp — ullyg + ||u - upln.

5. Applications

The general class of contact problems considered here are characterized
by the following system of equations and inequalities:

”Uij(u)j = fi(u)’ O'ij(U) == Eijkl“k,l in

u; =0 on I'p; on; =1t; on | R

ve|lFal =g, lor|<g= ur=20,
(5.1) FIF o] g } on I'¢.

lor| = ¢ = A > 0 such that ur = —Aor

Using the techniques of Duvaut and Lions [6], Oden and Pires [1], one can
derive the following variational principle characterizing problem (2.1).
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Find a displacement field u € M such that
(5.2) a(u,v —u)+ j(v) — j(u) > (f'(u),v—u) forall ve M,

where f'(u) is the Fréchet differential of the nonlinear differentiable func-
tional

f(u):/ﬂ‘/:f(n)dn dr at ue H.

Here the following notation and conventions are used:

! = the elastic body in a bounded open domain in R" with Lipschitz
boundary I' = I'p UTr UT ¢, where I'p(T'f) are portions of I’ on which
the displacements (tractions) are prescribed, and I'. is the (candidate)
contact surface on which a body may contact the foundation upon ap-
plication of the loads. Also, it is assumed throughout that F'enlp =

é,u = (uj,uz, - ,upn) is the displacement vector, u = u(z), where
z = (xy,23," - ,ZnN) is a point in .
(5.3) (Tu,v) = / oij(u) €;; (v)de

Q

=the virtual work produced by the stresses.

0ij(u) = Ejjkiu,, corresponding to displacement u on the strains €;;
(v) = 1/2(v; ; + vj;) due to the virtual displacement v. E;jz; is Hooke’s
tensor of elastic constants satisfying the usual ellipticity and symmetry
conditions.
j(v) = [ glgrlds
= virtual work on contact surface due to frictional stresses.

(5.4) f(v) = /Q /ﬂ " f(n)dn dz + /F ) tivids + /r ) Fovads.

In the expression for g(-), f(n) is the body force per unit volume depending
on the displacement field u, assumed to be given as a smooth function
in Ly();t; are components of surface traction, assumed to be given as
functions in Lo (I'p) and F,, is the prescribed normal contact pressure on
e

M = the constraint set corresponding to the unilateral condition A(u)-
n<s={ve HAv) n<sin W}, where s is given in W, the space of
normal traces of admissible displacements on I'¢, see [1].

vp = the coefficient of friction ; 0 < vp.
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S = the normalized initial gap between the body  and the foundation
prior to the application of loads.

un = u - n = normal displacement of particles on the boundary I.

oa{u) = normal contact pressure = o,;(u)n;n;;n; = components of
unit outward norm to I'.

H = {v e (H(Q)M;v(v) = 0 a.e. on Tp}, wherein 7 is the trace op-
erator mapping H'(2) onto H'/?(T'), and vy is the tangential component
of v on I'c. Here and throughout, we use the notation and conventions
commonly used in the study of partial differential equations and in the
study of contact problems by variational methods, see [1].

REMARK 5.1. The variational inequality (5.2) characterizes the Sig-
norini problem in elastostatics with friction forces. Inequality (5.2) is
merely a statement of the principle of virtual work for an elastic body re-
strained by frictional forces. The strain energy of the body corresponding
to an admissible displacement v is 1/2 (Tw,v) is the work produced by
0i;(u) through strains caused by the virtual displacemnent v -- u. The
form f depending upon the displacement u represents the work done by
the external forces, and j(-) represents the work done by the frictional
forces.

Problems of the type
—oii(u); = fi, 0ij(u) = Ejjuupy in Q

ui=0 on I'p; oyn;,=t; on I’
D, VL) F

vrlFal =9, lor|<g=ur=0,
(5.5) oid lorl < } on I'e.

ler| = ¢ = A > 0 such that uyp = —Aop

for which f; is a function only of the space variables, have been studied
by Duvaut and Lions [6]. In this case, Duvaut and Lions [6] have derived
the following variational principle characterizing problem (5.4).

Find a displacement field u € M such that

(5.8) a(u,v —u) + j(v) — j(u) 2 (f,v —u) for all v € M.

In order to derive the error estimate, we assume that the given function
f(u) is antimonotone, i.e.

(5.7) /Q (F(u) = F(v))(u = v)dz < O
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and

(5.8) 17l Loy < r{llellar,

where r = r(t) is a nondecreasing function for t € R, t > 0. If the
function f(u) defined by (5.4) is Fréchet differentiable, then (see Noor
and Whitemann [19]),

(5.9) (F (), v) = /Q f(u)vda.

Using relation (5.7) - (5.9), one can easily show that f'(u) is antimonote
and

(5.10) I @I < 1 @llza@) < rillulla}.

In order to apply the results of Sections 3 and 4, we must show that
all the hypotheses of Theorem 3.1 and Theorem 4.1 are satisfied. Now,
in view of the symmetry and ellipticity of E;jii, the operator T defined
by (5.3) is strongly monotone and Lipschitz continuous. The functional
jv) = fr‘c glvr|ds is obviously nondifferentiable, convex, proper and lower
semi-continuous. As the nonlinear function f(u) defined by (5.4) is an-
timonotone and Lipschitz continuous by the assumptions, thus showing
that all the hypotheses of Theorem 3.1 are satisfied. Hence it follows from
Theorem 3.1 that there does exist a unique solution of (5.2].

Finite Element Approzimation

We now consider the finite element approximation of the variational in-
equality (3.1). Following standard finite element techniques, we construct
a partition of ( into a mesh of finite elements over which the displace-
ments are approximated by piecewise polynomials. This defines a finite
dimensional subspace S of H. By constructing a sequence of regular re-
finements of the mesh, we generate a family {S}}x>0, of subspaces of H.
It is well known (1] that S} exhibit the following asymptotic interpolation
properties.

If u e (HT'(Q))N,r > 0, then there exists a constant ¢ > 0 such that

(5.11) xgg {llu = vnllo + Rllu — vall1} < Ch?llullsq,8 = min(3,r — 1),
v4 €Sy

Let I‘g denote the boundary of the mesh that approximates I'c and Y .
denote the set of all nodal points e on I'%.. We assume that Y., =Thnrc.
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As an approximation of the constraint set M, we introduce

(5.12) My = {¢n € CUT}):
on =v(v)h) - N vy € Su, ¢n(e) < sule)forall e €}

where s, is the Ly(T'¢)-projection of e on the space Wj of normal traces
of functions in S,. Thus, in our discrete model of the friction problem, we
impose the contact condition only at the nodal points on I'%. Clearly, in
general, M, ¢ M.

We also need the following result, which can be easily proved by using
the methods of Noor [20] and Janovsky and Whiteman [4].

LEMMA 5.1. There exists a constant C such that
(5.13) “f(Uh)“Lz(Q) < C1, forallh >0

For simplicity, we only consider the special case of Theorem 4.1 (ii),
where M), C M. Taking U + U' = (L,(f))? and using Lemma 5.1, we
obtain

(5.14) llu — unlly = O(R'/?).

Note that in the absence of the friction term b(u,v), it has been shown
in [20], that the error estimate in the energy norm is of order h.

6. Concluding Remarks

In this study, we have only studied a class of nonlinear variational in-
equalities. The general theory discussed in this paper can be used to
formulate variational principles for a wide range of free boundary prob-
lems. These include problems in elasticity, optimal control problems in the
dynamics of distributed systems, interface problems, equilibrium problems
in transportation and economics, and many others. It is true that each
of these areas of applications requires special consideration of peculiari-
ties of the physical problem at hand and the inequalities that models. In
this paper, we have considered and studied a general auxiliary variational
inequality problem. It is shown that the auxiliary principle can ve used
to suggest an innovative and novel algorithm for computing the approxi-
mate solution of variational inequalities. The auxiliary problem proposed
in this paper is quite general and flexible. By appropriate choice of the
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auxiliary problem, one may be able to select suitable method to solve the
variational inequalities and related optimization problems. The auxiliary
principle and suggested in this paper may be extended for the multivalued
operators involving variational inequalities. We have also obtained the er-
ror estimates for the finite element approximations of nonlinear variational
inequalities, which is of order h'/? in the energy norm. In this paper, we
have merely described a class of variational inequalities. They are many
fascinating and interesting applications of variational inequalities in many
different branches of pure and applied sciences. We leave the exploration
of these ideas to the interested reader. For related works, see [22-31] and
the references therein.
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