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CERTAIN CLASS OF ANALYTIC FUNCTIONS
IN THE UNIT DISK

Gao Chunyi and Shigeyoshi Owa

In this paper we introduce a class of analytic functions satisfying
Re{(1 - B)f(2)/z + BF(x)} > a (0 S a < 1,0 < B <L, |2 < 1),
We study the integral representation formula, coefficient estimates and
distortion theorems of such functions. We also consider a subclass of this
class of analytic functions.

1. Introduction and Definitions

Let A denote the class of functions of the form f(z) = 2z + 322, a, 2"
which are analytic in the open unit disk £ = {z : |z| < 1}. Also let
B(3, a) denote the subclass of A whose members satisfy the inequality

Re{(1 - B)f(2)/z + Bf'(2)} > a(z € E),

where 0 <a < 1,0 <3< 1. B(0,a) = B(a) was studied in papers [1]-[5]
fully, B(1, ) = b(«) was also studied in papers [5]-[7].

The purpose of this paper is to study some properties of the functions
in B(3, a), such as integral representation formula, coefficient inequalities
and distortion theorems. We also consider a subclass of B(S, @) and study
the corresponding coefficient inequalities and distortion theorems.

2. The Class B(j3,a)

Lemma 1([9]). Let 3 > 0 and D(z) be a starlike function in E. Let
N(z) be analytic in E and N(0) = D(0) = 0, N'(0) = D'(0) = 1. Then
Re{N(z)/D(2)} > 0 for z in E whenever

Re{(1 — B)N(2)/D(z) + BN'(2)/D'(z)} > 0
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for z in E.

Lemma 2. Under the same conditions as Lemma 1, we have the conclu-
sion: Re{N(z)/D(z)} > a for z in E whenever

Re{(1 - B)N(2)/D(z) + BN'(2)/D'(2)} > @

for z in E.
Proof. From the condition, we have
T Re{(1 ~ A)(N(:)/D(2) — a) + B(N'(z)/ D'(2) — @)} > O(= € ),

let M(z) = (N(z)— aD(z))/(1 — a), this inequality becomes
Re{(1 — B)M(z)/D(z) + BM'(2)/ D'(z)} > 0,(z € E).

For M(z) and D(z) satisfy the conditions of Lemma 1, we can obtain from
Lemma 1 that Re{M(z)/D(z)} > 0(z € E), this means Re{N(z)/D(z)} >
a(z € E).

Theorem 1. Let f(z) € B(B,«). Then f(z) € B(0,«) = B(a).
Proof. From the definition, when f(z) € B(3,a), we have

Re{(1 = B)f(2)/2 + Bf(2)} > a(z € E). (1)

Also for f(z) = z + =2, a,2" is analytic in E, f(0) = 0 = f'(0) — 1,
D(z) = z is starlike in E, D(0) = 0 = D'(0) — 1, from Lemma 2 and (1)
we have

Re{f(z)/2} > a(z € E).
this means that f(z) € B(0,a) = B(a).

Theorem 2. Let 0 <~y < 3. Then B(3,a) C B(y,a).

Proof. 1If v = 0, we have proved B(8,a) C B(0,a) in Theorem 1, so we

suppose v # 0.
When f(z) € B(8,a), we have inequality (1), and from Theorem 1 we
also have Re{f(z)/z} > a(z € E), and

/z)

(-t = HE - 4 - 5l

Z

+ Bf'(2)},
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thus
ref(1 - 122 1 37(2))
2B _ReLE) L Yper — I3 sps
= 55— DRe==+ ZRe{(1 - B)== + B7())
VR BetLuo=u [z
>5(’r 1)+H (z € E).

From the definition we know f(z) € B(y,a). That means B(f5,«a) C
B(v, a). The proof is completed.

Theorem 3. Let f(z) = z 4+ 322, a,2" € B(3,a). Then we have sharp

coefficient estimates:

2(1 — a)
S TT o »(n 2> 2).

|an|

Proof. Letting
(1 = BY (N e £ BF () = pl2) =1 4 T s, (2)
n=1

we know Rep(z) > a(z € E) and

!cnlgz(l_a) (n:l,Q,--- ;

1+ i[l +(n—=1)Bla.z"" =1+ f: &2

n=2 n=1

Comparing the coefficients, we have

1+(m—1)f)as =cn1 (n2>2).

Using the estimate (3), we can obtain the inequalities we need to prove.
It is easy to know

1 -3 1 414(1-2a)¢
f(z) = 5° _/C I—I:E—df
(1—a)

e v =g @
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(where powers are meant as principal values) belongs to B(f,a), and it
attains the equality in the theorem, so the results are sharp.

Let P denote the class of analytic functions p(z) = 14+ 372 ¢q.2™ which
satisfies Rep(z) > 0 (z € E), i.e., the well-known class of functions with
positive real part. We have the following integral representation formula

for f(z) € B(j,a).

Theorem 4. A function f(z) is in B(fB,a) if and only if there ezists
p(z) € P such that

1) = 527 [ - a)p() + el

- B] t371[(1 — a)p(zt) + aldt, (5) |
where 3 # 0. If =0, then
f(z) = 2((1 — a)p(z) + a). (6)

Powers in (5) are meant as principal values.

Proof. Let f(z) € B(f,a). Then we have inequality (1). So there exists
p(z) € P such that

(1= B}z + BF(2) - o} = p(2),

that is,
(1= B)(f(2) — az)/z+ B(f'(2) — @) = (1 — a)p(2). (7)
If B # 0, multiplying both sides of (7) by (1/8)z5", we obtain
A7) - a2l = 5255 p(a).

Integrating both sides of this equality from 0 to z, we have

fz) =

2 -3 j " ¢Ep(¢)d
- & l-r‘a/o"g?s 1[(1 = a)p(C) + a]d¢
- E/o t37[(1 - a)p(zt) + aldt. (8)
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If 3 =0, we can obtain (6) from (7) easily.
Conversely, if f(z) satisfies (5) or (6), then it is casy to see that f(z) €
B(f3, ). The proof of Theorem 4 is completed.

Theorem 5. Let f(z) € B(B,a), then for |z| = r < 1 we have the
following sharp estimates:

i) If B # 0,
ﬂf gl = (=200t <D ]r-ll“l_%) dt, (9)

14+1tr 1-—tr

the function f(z) defined by (4) attains the equality of (9).
i) If @ =10,
1 —(1—-2a)r
p——
147
the function f(z) = z(1 4+ (1 — 2a)2)/(1 — z) attains the equality of (10).
Proof. If 8 # 0, from the integral representation formula (5) we have

141 ~20)r

1—r

<|f(z)l £ (10)

£ < 5 [ 710 )lpen)] + alat

Notice that |p(z)| < (1 +r)/(1 — r)(]z2]| = r < 1). So we obtain the
right-side inequality of (9). On the other hand, from (5) we have

(2)[z= / t"_1 [(1 = a)p(zt) + aldt,

thus

Re(f(2)/2) = %f t371[(1 — ) Rep(=t) + aldt.

It follows from Rep(z) > (1 —r)/(1 +r) (|z] =r < 1) that

- + aldt

Re(f(z)/2) 2 ; 5 [0 - e

__11 — )t
= dt.
,3’ ] 1 + ir

Noting that |f(z)/z| > Re(f(z)/z), we can obtain the left-side inequality
of (9) at once. That the function defined by (4) can attain the equality is
obvious.
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If we start from (6), we can obtain (10) similarly. The proof of Theorem
5 is completed.

3. A subclass of B(j3, a)

Owa [5] defined the subclasses V' (0, ) and V(8,,~) of analytic functions,
that is, if f(z) = 2+ 222, a,2" € A and satisfies arg(a,) = 0,(n > 2), we
call f(z) € V(8,); if further there exists a constant ~ such that

0.+ (n — 1)y =7 (mod 2x), (11)

then we call f(z) € V(,,7). Let V denote the union of V(8,,~) obtained
by taking all admissible sequences {f,} and all admissible real numbers -
-

Let B,(f3) = B(B,a)NV, it is a subclass of B(3,a). It is clear that
B,(0) = B, and B,(1) = b, which were introduced by Owa [3]. In this
section we study some coefficient inequalities, distortion theorems of the

class B,(f), etc.
Theorem 6. Let f(z) = z + Yor,a,2" € B,(f), then

i(lﬂn— DB)]an] £1 - a, (12)

this inequalily is sharp.

Proof. When f(z) € By(3), f(z) € B(f3,a), so we have inequality (1).
Putting the power series expansion of f(z) into (1), we have

Re{l + i(l +(n—1)8)a,z""'} > a.

n=2

Also, for f(z) € B,(B), we have f(z) € V(0,,7), let z = re’ and let
r — 17, we obtain

Re{l 4+ 3" (1 4 (n — 1)B)|a,|e®*+(=11} > .
n=2

Using (11) we have

oo

1-3 (14 (n-1)8)|an| > e,

n=2
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that is the inequality we need to prove. The sharpness of (12) can be seen
from the following function

l—a il

) =2+ =15

(n > 2).

Remark. If welet 3 =0 and 3 =1 in Theorem 6, we can obtain Theorem
1 and Theorem 2 of paper [5] respectively.

Theorem 7. Let f(z) = 24322, a,2" € B.(f), then for |z| < 1 we have

<fR) <]z [+ I-%'I2 (13)

1+6

and

2] = (1 = a)z|* < [(1 = B)f(2) + Bf'(2)| < || + (1 = ) |2[*.  (14)

The function f(z) = z+ i_i_g %222 attains the equalities of these inequalities

at z = £|z|e™"% respectively.

Proof. From Theorem 6 we have
(1+5) Z lan| < Z(l +(n=1)8)|ax| <1 -«
n=2 n=2

s0 1.2 o lan] < (1 —a)/(1 + B), hence we have

(o e}

(2] 2 |2l = X lanllz]” > |2| = |2/* Z lan| 2 |2| -

n=2 n=2

I %,
and

1f(2)] < |z + Z laallz]® < |2] + |2I° Z lan] < |z]

n=2

From these two inequalities we can obtain the inequality (13).
For the inequality (14), because

(1=B)f(z) +Bzf(2) =2 + fj(l +(n—1)B)a,z"

n=2



20 Gao Chunyi and Shigeyoshi Owa

from Theorem 6 we can obtain

(1= B)f(2) + Bzf'(2)] < |z|+§;[1+(n——1)m|an||z|ﬂ
< Jel+ (1= a2,

and

(1= B)f(2) + Bzf@)| = |zl = oML + (n — 1)Blla 2]
n=2

> |z|—(1- a)|z|2.

These are the inequality (14). The sharpness of (13) and (14) is obvious.

Remark. If welet 3 =0and 8 =1 in Theorem 7, we can obtain Theorem
3 and Theorem 4 of paper [5] respectively.
From (13) we can obtain the covering theorem of class B,(3).

Corollary. If f(z) = 24 Y02, ax2" € B,(f), then the unit disk E = {z :
|z| < 1} is mapped by f(z) onto a region which contains the disk |w| < “;—Ig
This result is sharp, the extremal function is given in Theorem 7.

Theorem 8. Let f(z) = z + 202, a,2" € B,(f), then we have f(z) €
S*(2tB-ly (12| < 1) if B #0 and 2a + B8 > 1, that is, f(z) is starlike of

a+f3
order 3%;33;1 in E, thus f(z) is univalent in E.
Proof. 1t is sufficient for us to prove that
zf'(2) 20+ 8—-1 _
-1j<1l———. 15
T atP o
It is easy to know
z2f'(2) 1+ 30, a2t nea(n — 1)|ax|
== ]_ - = —1 < Ui= ot 1
I f(Z) [ I l_l_ziozzanzn—l l— - ?lo=2|an| (IZI r< )1
so for 8 # 0 we have
(] oC e =
Blzf (Z) —ll—l S Zn=2[1+(nml)6”aﬂ| 1’
f(Z) § Z:'l'l:‘z |a’ﬂ|
and from Theorem 6 we obtain
zf'(z l—a—-1 —afl +
o AT . ad Pl L
f(Z) 1— 138 «+ ,B
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that is , ; 5 {
sz(z)_1|< e L i T Jii

f(z) atf a+p
The proof of Theorem 8 is completed.

Definition. The fractional integral of order A of f(z) is defined by
" 1 = f(¢) \
DA a)= d 16
z f( ) F(/\)-/U (Z —C)I_A C! ( )

where A > 0, f(z) is analytic in a simply connected region containing the
origin in the z-plane, the power in (16) is meant as principal value.

Theorem 9. Let f(z) = z + Yot a,2" € B.(fB), then for A > 0 and
z € I we have

|z[+ 2(1 —a) .
and
N e 2(1 — )

Inequalities (17) and (18) are sharp.
Proof. We consider the function
F(z) =T(2+A)2*D* f(2)

by the aid of Gauss geometric function. Then we can obtain the following
power series expansion of F(z):

P+ D02 +A)
Tn+1+x) "

n

F(z) = z-{—i

where A, = (T'(n+ 1)['(2+ X)/T(n+ 1+ A))a,. For A >0,n > 2,

Fin+ 1)I'(24+X) 2
[(n+142A) 24 A

0<

and f(z) € B.(f), so

2(1 —a)
,;2[’““2 )\ZI”I (1+3)(2+X)
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Thus

2(1 —a) r
(1+8)(2+ ,\)l‘| '

|F(z)] = |z] = ):IAnHZI”>II—IZIQZ|AI_Iz

We can obtain (17) from this inequality, and

o . o 2(1 — a) 2
P < 1o+ 5 1Al < el + 2 3 144 < el + 7t e

so we can obtain (18). The sharpness of the results can be seen from the

function f(z) defined by

212 2(1 —a) ;
=X - tgg_'_
that is, by f(z) =z —i_l__—geie’zz.
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