EXAMPLES OF HOLOMORPHIC SIEGEL MODULAR FORMS OF WEIGHT $3 / 2$

Young Ho Park

In [K] Kudla has generalized the Hecke's construction [He] to produce holomorphic Siegel modular forms of genus n and weight $\frac{1}{2}(n+1)$ as an integral of a non-holomorphic theta-series. Even though the existence of nonzero such forms was proved, no concrete examples were given. In this paper we consider the case $n=2$ and construct non-trivial examples corresponding to each prime $p \equiv 3(\bmod 4)$.

1. Introduction

Let V be a \mathbf{Q} vector space with non-degenerate symmetric \mathbf{Q}-bilinear form (,) of signature ($n, 1$). Let $L_{0} \subset V$ be a lattice such that $L_{0} \subset L_{0}^{*}$, where

$$
L_{0}^{*}=\left\{v \in V \mid\left(v, v^{\prime}\right) \in \mathbf{Z} \text { for all } v^{\prime} \in L_{0}\right\}
$$

is the dual lattice. Let $L=L_{0}^{n}$ and $L^{*}=\left(L_{0}^{*}\right)^{n}$. Let $G=S O(V)$ viewed as an algebraic group defined over \mathbf{Q}. Let

$$
E_{L}=\left\{g \in G(\mathbf{Q}) \mid g L_{0}=L_{0} \text { and } g \text { acts trivially in } L_{0}^{*} / L_{0}\right\}
$$

be the group of units and let

$$
E=E_{L}^{+}=E_{L} \cap G(\mathbf{R})^{0}
$$

where $G(\mathbf{R})^{0}$ is the connected component of identity. Let

$$
D=\{Z \in V(\mathbf{R}) \mid(Z, Z)=-1\}^{0}
$$

be one component of the hyperbolid of two sheets in $V(\mathbf{R})$, and we will identify the tangent space $T_{Z}(D)$ to D at Z with Z^{\perp}. We fix an orientation

Supported by TGRC-KOSEF 1991.
of $V(\mathbf{R})$ and determine an orientation of $T_{Z}(D)$ such that for every properly oriented basis $\left\{w_{1}, w_{2}\right\}$ for $T_{Z}(D)$ the basis $\left\{w_{1}, w_{2}, Z\right\}$ is properly oriented for V. Note that $G(\mathbf{R})^{0}$ preserves the orientation.

Let $X \in V(\mathbf{R})^{n}$ such that $(X, X)>0$. Then $\operatorname{span}(X)^{\perp}$ intersects with D at a single point, say Z_{0}. Define

$$
\epsilon(X)= \begin{cases}1 & \text { if } X \text { is properly oriented basis for } T_{z_{0}}(D) \\ -1 & \text { otherwise }\end{cases}
$$

An element $h \in L^{*} / L$ is called non-singular if, for any choice of representative $h^{\prime} \in L^{*}$ for h, the following conditions hold:
(1) $\left(h^{\prime}, h^{\prime}\right) \notin M_{n}(\mathbf{Z})$.
(2) If M is the least positive integer such that $M\left(h^{\prime}, h^{\prime}\right) \in M_{n}(\mathbf{Z})$ then $M\left(h^{\prime}, h^{\prime}\right)$ is invertible modulo M.

For $X \in M_{n}(\mathbf{C})$, we let $e_{n}(X)=e^{i \pi t r(X)}$. If $X \in V^{k}$ and $Y \in V^{\ell}$, then we let $(X, Y)=\left(\left(X_{i}, Y_{j}\right)\right) \in M_{k, \ell}(\mathbf{Q})$. The main result of $[\mathrm{K}]$ is then the following.

Theorem 1.1. For non-singular $h \in L^{*} / L$ and for $\tau \in \mathcal{H}_{n}$, the Siegel space of genus n,

$$
\vartheta(\tau, h, L,(,))=\sum_{\substack{X-h \in L \\(X, X)>0, \bmod E}} \epsilon(X)\left|E_{X}\right|^{-1} e_{n}(\tau(X, X))
$$

is a holomorphic Siegel modular form of weight $\frac{1}{2}(n+1)$.
In this paper, we take V to be the space of binary quadratic forms

$$
[a, b, c](x, y)=\frac{1}{2} a x^{2}+b x y+\frac{1}{2} c y^{2}
$$

over \mathbf{Q}. We choose the standard basis for \mathbf{Q} and fix isomorphisms $V \simeq$ $\mathbf{Q}^{3} \simeq S_{2}(\mathbf{Q})$ as follows:

$$
\frac{1}{2} a x^{2}+b x y+\frac{1}{2} c y^{2} \mapsto[a, b, c] \mapsto\left(\begin{array}{cc}
a & b \\
b & c
\end{array}\right) .
$$

Here we view Q^{3} as a space of row vectors. We will use any of these isomorphisms to represent an element of V, whichever is proper at the given situation.

Define a form $($,$) on V$ of signature $(2,1)$ by

$$
(X, X)=(\text { discriminant of } X)=b^{2}-a c=-\operatorname{det}(X)
$$

where $X=[a, b, c] \in V$. We begin with the lattice $L_{0}=2 \mathbf{Z} \times \mathbf{Z} \times 2 \mathbf{Z}$ so that $L_{0}^{*}=\mathbf{Z}^{3}$. Then for any positive integer M, we let

$$
(X, Y)_{M}=M^{-1}(X, Y), \quad L_{0, M}=M L_{0} .
$$

Note that the dual lattice to $L_{0, M}$ with respect to $(,)_{M}$ is again $L_{0}^{*}=\mathrm{Z}^{3}$. Let $L=L_{0}^{2}$. For $h \in L^{*} / M L$, non-singular, let

$$
\vartheta(\tau, h, M, L)=\left\{\vartheta\left(\tau, h, L_{0, M},(,)_{M}\right)\right.
$$

2. Groups of units

We will continue to use the notations as in $\S 1$ so that we have $G=$ $S O(2,1) . G(\mathbf{R})$ has two connected components

$$
G(\mathbf{R})=G(\mathbf{R})^{0} \cup \lambda G(\mathbf{R})^{0}
$$

where $\lambda \in G$ such that $[a, b, c] \lambda=[-a, b,-c]$. We have the spinor norm map

$$
\theta: G(\mathbf{R}) \rightarrow \mathbf{R}^{\times} /\left(\mathbf{R}^{\times}\right)^{2}
$$

and that $\operatorname{ker} \theta=G(\mathbf{R})^{0}$.
The group $S L_{2}(\mathbf{R})$ acts on $V(\mathbf{R})$ to the right via

$$
[a, b, c] \cdot\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)(x, y)=[a, b, c](\alpha x+\beta y, \gamma x+\delta y)
$$

See [GKZ]. If we use the isomorphism $V(\mathbf{R}) \simeq S_{2}(\mathbf{R})$, this action is stated as

$$
X \cdot g={ }^{t} g X g
$$

for $g \in S L_{2}(\mathbf{R})$ and $X \in S_{2}(\mathbf{R})$. This action preserves the form (,) and we have an exact sequence

$$
1 \rightarrow\{ \pm 1\} \rightarrow S L_{2}(\mathbf{R}) \rightarrow G(\mathbf{R})^{0} \rightarrow 1
$$

In particular, we have

$$
G(\mathbf{R})^{0} \simeq S L_{2}(\mathbf{R}) / \pm 1=P S L_{2}(\mathbf{R})
$$

To simplify the notation, we will frequently view an element $g \in S L_{2}(\mathbf{R})$ as an element of $G(\mathbf{R})$. Now let

$$
G_{L}=\{g \in G(\mathbf{R}) \mid L g=L\}=\left\{g \in G(\mathbf{R}) \mid L_{0} g=L_{0}\right\}
$$

be the stabilizer of the lattice L in $G(\mathbf{R})$.
Lemma 2.1. $G_{L} \cap G(\mathbf{R})^{0}=P S L_{2}(\mathbf{Z})$.
Proof. Suppose $g=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G_{L} \cap G(\mathbf{R})^{0}$. Then

$$
\alpha^{2}, \alpha \gamma, \gamma^{2}, 2 \alpha \beta, \alpha \delta+\beta \gamma, 2 \gamma \delta, \beta^{2}, \beta \delta, \delta^{2} \in \mathbf{Z}
$$

If any of $\alpha, \beta, \gamma, \delta$ is 0 , then it is clear that $g \in S L_{2}(\mathbf{Z})$. So suppose none of these are 0 . Then write

$$
\alpha=k \sqrt{p}, \beta=\ell \sqrt{q}, \gamma=m \sqrt{r}, \text { and } \delta=n \sqrt{s},
$$

where p, q, r, and s are square-free integers. Note that $\alpha \beta, \gamma \delta$ must be integers. Since $\alpha \beta$ is an integer, we see that $p=q$. Similarly $p=r=s$. Since $1=\alpha \delta-\beta \gamma=\sqrt{p}(k n-\ell m)$, we have $p=1$. Hence $g \in P S L_{2}(\mathbf{Z})$.
Corollary 2.2. $G_{L}=P S L_{2}(\mathbf{Z}) \cup \lambda P S L_{2}(\mathbf{Z})$.
As in $\S 1$, we let $M>0$ be an integer, and let $(X, Y)=M^{-1}(X, Y)$. Let $L_{0, M}=M L_{0}, L_{M}=\left(L_{0, M}\right)^{2}$. Let

$$
E_{L}(M)=\left\{g \in G_{L} \mid g \text { acts trivially in } L_{0}^{*} / M L_{0}\right\}
$$

and let $E(M)=E_{L}(M) \cap G(\mathbf{R})^{0}$. Observe that if $M \mid N$, then $E(M) \supset$ $E(N)$. As usual, let

$$
\Gamma(M)=\left\{\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in S L_{2}(\mathbf{Z}) \left\lvert\,\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod M)\right.\right\}
$$

For any subgroup $\Gamma S L_{2}(\mathbf{Z})$, we let $\bar{\Gamma}=(\Gamma \cup-\Gamma) / \pm 1 \subset P S L_{2}(\mathbf{Z})$. Recall that $S L_{2}(\mathbf{Z}) / \Gamma(M) \simeq S L_{2}(\mathbf{Z} / M \mathbf{Z})$, and $\left|S L_{2}(\mathbf{Z} / M \mathbf{Z})\right|=M^{3} \prod_{p \mid M}\left(1-\frac{1}{p^{2}}\right)$. The crucial fact to our construction is the following.

Proposition 2.3. For any odd prime p, we have

$$
E(p)=\bar{\Gamma}(2 p)
$$

Proof. Let $F(p)$ be the full inverse image of $E(p)$ under the map $S L_{2}(\mathbf{Z}) \rightarrow$ $P S L_{2}(\mathbf{Z})$. It is not difficult to show that

$$
g=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in F(p) \Leftrightarrow \alpha^{2} \equiv 1, \quad \beta, \gamma \equiv 0(\bmod 2 p) .
$$

Thus we have a homomorphism

$$
\begin{gathered}
F(p) \rightarrow(\mathbf{Z} / 2 p \mathbf{Z})_{2}^{\times} \simeq\{ \pm 1\} \\
\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \mapsto \alpha,
\end{gathered}
$$

where the subscript 2 denotes the 2 -torsion subgroup. This map is onto and has the kernel $\Gamma(2 p)$. Thus $F(p) / \Gamma(2 p) \simeq\{ \pm 1\}$. The Proposition now follows.

3. Examples

We take D as in $\S 1$ such that $1_{2} \in D$. First we determine the fomula for ϵ.

Lemma 3.1. Let $X=\left(X_{1}, X_{2}\right)$ such that $(X, X)>0$. If $X_{i}=\left[a_{i}, b_{i}, c_{i}\right]$, then

$$
\epsilon(X)=\operatorname{sgn}\left(b_{1} c_{2}-b_{2} c_{1}\right) .
$$

Proof. Note that $[x, y, z]$ is orthogonal to $[a, b, c]$ if and only if $y b-\frac{1}{2} x c-$ $\frac{1}{2} z a=0$ if and only if $[x, y, z]$ is Euclidean orthogonal to $\left[-\frac{1}{2} c, b,-\frac{1}{2} a\right]$. Hence one vector which is orthogonal to X_{1}, X_{2} is

$$
\begin{aligned}
Z & =\left[-\frac{1}{2} c_{1}, b_{1},-\frac{1}{2} c_{1}\right] \times\left[-\frac{1}{2} c_{2}, b_{2},-\frac{1}{2} c_{2}\right] \\
& =\frac{1}{2}\left[a_{1} b_{2}-b_{1} a_{2}, \frac{1}{2}\left(a_{1} c_{2}-c_{1} a_{2}\right), b_{1} c_{2}-c_{1} b_{2}\right] .
\end{aligned}
$$

Note that $(Z, Z)<0$ since Z is orthogonal to $\operatorname{span}(X)$. Now $Z_{0}=\alpha$ $\operatorname{sgn}\left(b_{1} c_{2}-c_{1} b_{2}\right) Z$ for some $\alpha>0$. It is clear that $\epsilon(X)=\operatorname{sgn}\left(\operatorname{det}\left(X, \operatorname{sgn}\left(b_{1} c_{2}-\right.\right.\right.$ $\left.\left.c_{1} b_{2}\right) Z\right)$. But $\operatorname{det}\left(X, \operatorname{sgn}\left(b_{1} c_{2}-c_{1} b_{2}\right) Z\right)=\operatorname{sgn}\left(b_{1} c_{2}-c_{1} b_{2}\right)(-(Z, Z))$. Hence $\epsilon(X)=\operatorname{sgn}\left(b_{1} c_{2}-c_{1} b_{2}\right)$.

Note that $E(M)_{X}=1$. This follows from the fact that if U is a regular hyper plane of V, and σ is an isometry of U into V, then there are exactly

2 extensions of σ to $O(V)$ and one is a symmetry times the other [O]. So $E(M)_{X} \subset\{e, \tau\}$, where τ is the symmetry with respect to the line orthogonal to the hyperplane $\operatorname{span}(X)$. But $\theta(\tau)=1$, where θ denotes the spinor norm as before. Thus we have $E(M)_{X}=1$.

Next observe that

$$
\begin{equation*}
\vartheta(\tau, h g, M)=\theta(g) \vartheta(\tau, h, M) \tag{3.1}
\end{equation*}
$$

for $g \in G_{L}$ and

$$
\begin{equation*}
\vartheta(\tau, h, M)=\theta(g) \vartheta(\tau, h, M) \tag{3.2}
\end{equation*}
$$

for $g \in E_{L}(M)$. Recall that $\lambda P S L(2, \mathbf{Z}) \subset G_{L}$ and $\theta(\lambda)=-1$.
Proposition 3.2. If all prime factors of M are congruent to $1 \bmod 4$, then $\vartheta(\tau, h, M)$ is identically 0 .
Proof. For $g=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in S L_{2}(\mathbf{Z}), \lambda g \in E_{L}(M)$ if and only if

$$
\begin{equation*}
\left.\alpha^{2} \equiv-1(\bmod 2 M), \quad \beta \equiv \gamma \equiv 0 \bmod M^{\prime}\right) \tag{3.3}
\end{equation*}
$$

where $M^{\prime}=\operatorname{lcm}(2, M)$. By assumption, $x^{2}=-1$ has a solution $\alpha \bmod$ $2 M$. Note that $-\alpha$ is a solution, also. Take $\delta=-\alpha$, and $\beta=\gamma=0$. This choice of $\alpha, \beta, \gamma, \delta$ satisfies (3.3) and $\alpha \delta-\beta \gamma=-\alpha^{2} \equiv 1 \bmod 2 M$. Since $S L_{2}(\mathbf{Z}) / \Gamma(2 M) \simeq S L_{2}(\mathbf{Z} / 2 M \mathbf{Z})$, there exists a $g \in S L_{2}(\mathbf{Z}), g$ congruent to $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \bmod 2 M$ so that $\lambda g \in E_{L}(M)$. The proposition now follows from (3.2).

Now let $M=p \equiv 3(\bmod 4)$ be a prime so that -1 is a nonsquare $\bmod p$. Take $e_{1}=[0,1,0], e_{2}=[1,0,-1] \in V$, and let $h_{0}=\left[e_{1}, e_{2}\right]$. Let

$$
L_{1}=\left\{X \in L^{*} \mid(X, X)=\left(h_{0}, h_{0}\right), X \equiv h_{0}(p L)\right\} .
$$

Lemma 3.3. $L_{1}=h_{0} \Gamma(p)$.
Proof. For any $X \in L_{1}$, there exists an element $g \in G(\mathbf{Q})$ such that $h_{0} g=X$. Since $G(\mathbf{R})=P S L_{2}(\mathbf{R}) \cup \lambda P S L_{2}(\mathbf{R})$, there exists an element $\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in P S L_{2}(\mathbf{R})$ such that $g=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ or $g=\lambda\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)$.

Suppose $g=\lambda\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$. Then $h_{0} g \equiv h_{0}(\bmod p L)$ implies that

$$
2 \alpha \gamma \equiv 0(\bmod 2 p), \alpha \delta+\beta \gamma \equiv 1(\bmod p), 2 \beta \delta \equiv 0(\bmod 2 p),
$$

$-\alpha^{2}+\gamma^{2} \equiv 1(\bmod 2 p),-\alpha \beta+\gamma \delta \equiv 0(\bmod p),-\beta^{2}+\delta^{2} \equiv-1(\bmod 2 p)$, Since $\alpha \delta-\beta \gamma=1$, we have $\alpha \delta \equiv 1(\bmod p), \beta \gamma \equiv 0(\bmod p)$. Thus $\alpha^{2}, \beta^{2}, \gamma^{2}, \delta^{2}$ and $\alpha \beta, \beta \gamma, \gamma \delta, \delta \alpha$ are all integers. So $\alpha, \beta, \gamma, \delta \in \mathbf{Z}$. Since $\alpha \delta \equiv-1(\bmod p)$ and $\beta \delta \equiv 0(\bmod p)$, we have $\beta \equiv 0(\bmod p)$. But then $\delta^{2} \equiv-1(\bmod p)$, which is impossible. Hence $g=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$, and $g \in P S L_{2}(\mathbf{Z})$ by the similar argument as above. Now $h_{0} g \equiv h_{0}(\bmod p L)$ if and only if

$$
\begin{gathered}
\alpha \gamma \equiv 0(\bmod p), \alpha \delta+\beta \gamma \equiv 1(\bmod p), \beta \delta \equiv 0(\bmod p) \\
\alpha^{2}-\gamma^{2} \equiv 1(\bmod 2 p), \alpha \beta-\gamma \delta \equiv 0(\bmod p), \beta^{2}-\delta^{2} \equiv-1(\bmod 2 p)
\end{gathered}
$$

Since $\alpha \delta-\beta \gamma=1$, we have $\alpha^{2}-\gamma^{2} \equiv \beta^{2}-\delta^{2} \equiv 1(\bmod 2)$. Hence $h_{0} g \equiv h_{0}$ $(\bmod p L)$ if and only if

$$
\begin{gathered}
\alpha \gamma \equiv 0(\bmod p), \alpha \delta+\beta \gamma \equiv 1(\bmod p), \beta \delta \equiv 0(\bmod p) \\
\alpha^{2}-\gamma^{2} \equiv 1(\bmod p), \alpha \beta-\gamma \delta \equiv 0(\bmod p), \beta^{2}-\delta^{2} \equiv-1(\bmod p)
\end{gathered}
$$

Again, $\alpha \delta-\beta \gamma=1$ shows that $\alpha \delta \equiv 1(\bmod p)$. Hence $\beta \equiv \gamma \equiv 0(\bmod$ $p)$ and $\alpha \equiv \delta \equiv \pm 1(\bmod p)$. Therefore $g \in \Gamma(p)$. The inverse inclusion is clear.

Theorem 3.4. Let $e_{1}=[0,1,0], e_{2}=[1,0,-1] \in V$, and $h_{0}=\left[e_{1}, e_{2}\right]$. Then for any prime $p \equiv 3(\bmod 4)$, we have $\vartheta\left(\tau, h_{0}, p\right) \neq 0$.
Proof. Let $\vartheta\left(\tau, h_{0}, p\right)=\sum_{g>0} a(g) e(\tau g)$ be the Fourier expansion of ϑ. Then, by the Proposition 2.3 and Lemma 3.3, we have

$$
a\left(1_{2}\right)=\sum_{\substack{X \in L_{1} \\ \bmod \Gamma(2 p)}} \epsilon(X)=\sum_{g_{1} \in \Gamma(p) / \Gamma(2 p)} \epsilon\left(h_{0} g_{1}\right)=-|\Gamma(p) / \Gamma(2 p)|=-6 .
$$

Acknowledgements. I would like to thank S. Kudla for many crucial discussions and for his constant encouragement at the University of Maryland.

References

[GKZ] B. Gross, W. Kohnen, D. Zagier, "Heegner points and derivatives of L-series II", Math. Sci. Research Inst., 1989.
[H] E. Hecke, Zur Theorie der elliptischen Modulfunklionen, Math. Ann. 97(1929), 210-242.
[K] S. Kudla, Holomorphic Siegel Modular Forms Associated to $S O(n, 1)$, Math. Ann. 256(1981), 517-534.
[R] B. Ribenboim, "Algebraic Numbers", Wiley-Interscience, 1972.

