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EXAMPLES OF HOLOMORPHIC SIEGEL
MODULAR FORMS OF WEIGHT 3/2

Young Ho Park

In [K] Kudla has generalized the Hecke’s construction [He] to produce
holomorphic Siegel modular forms of genus n and weight $(n + 1) as an
integral of a non-holomorphic theta-series. Even though the existence
of nonzero such forms was proved, no concrete examples were given. In
this paper we consider the case n = 2 and construct non-trivial examples
corresponding to each prime p = 3 (mod 4).

1. Introduction

Let V be a Q vector space with non-degenerate symmetric Q-bilinear
form (, ) of signature (n,1). Let Ly C V be a lattice such that Ly C L,
where

Ly = {v € V|(v,0") € Z for all v’ € Lo}
is the dual lattice. Let L = L} and L* = (L§)". Let G = SO(V) viewed

& . slgchriis ironip-defined over-0). Dit
EpL = {9 € G(Q)|lglo = Lo and ¢ acts trivially in L/ Lo}
be the group of units and let
E = E} = B, N G(R)",
where G(R)? is the connected component of identity. Let
D={ZeVR)|(Z,Z2)=-1}°

be one component of the hyperbolid of two sheets in V(R), and we will
identify the tangent space Tz(D) to D at Z with Z+. We fix an orientation
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of V(R) and determine an orientation of Tz(D) such that for every prop-
erly oriented basis {wy,w;} for Tz(D) the basis {w;,w,, Z} is properly
oriented for V. Note that G(R)? preserves the orientation.

Let X € V(R)" such that (X, X) > 0. Then span(X )" intersects with
D at a single point, say Zy. Define

(X) = { 1 if X is properly oriented basis for 7.,(D)

—1 otherwise

An element h € L*/L is called non-singular if, for any choice of repre-
sentative b’ € L* for h, the following conditions hold:

(1) (B, ') ¢ My (Z).

(2) If M is the least positive integer such that M(k/, k') € M, (Z) then
M(h', ') is invertible modulo M.

For X € M,(C), we let e,(X) =™ X, If X € V¥ and Y € V¥, then
we let (X,Y) = ((X,,Y;)) € M .(Q). The main result of [K] is then the
following.

Theorem 1.1. For non-singular h € L*/L and for v € H,, the Siegel
space of genus n,

Ik, L,(,)) = 3 e(X)[Ex|  ea(r(X, X))
X-heL
(X,X)>0, mod E
is a holomorphic Siegel modular form of weight 3(n + 1).

In this paper, we take V to be the space of binary quadratic forms
L 1,
[a,b,c](2,y) = Faz” + bay + Sey
over Q. We choose the standard basis for Q and fix isomorphisms V' ~

Q® ~ 55(Q) as follows:

1 2 ]- 2 a b
e +b:cy+§cy — [a,b,c] — ( g o ) :
Here we view Q> as a space of row vectors. We will use any of these
isomorphisms to represent an element of V, whichever is proper at the
given situation.

Define a form (, ) on V of signature (2,1) by

(X, X) = ( discriminant of X) = b* — ac = —det(X)
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where X = [a,b,c] € V. We begin with the lattice Ly = 2Z X Z x 2Z so
that Lj = Z3. Then for any positive integer M, we let

(X, V) = MTY(X,Y), Loy = MLo.

Note that the dual lattice to Lqas with respect to (, )as is again Lj = Z°.
Let L = L2. For h € L*/M L, non-singular, let
dr,h,M,L) = 9(r,h, Lop,(, )nr)
1 e(X)|Ex | en(7(X, X)).

X=h(ML)
(X,X)>0, mod E

2. Groups of units

We will continue to use the notations as in §1 so that we have G =
S0(2,1). G(R) has two connected components

G(R) = G(R)° U AG(R)°,

where A € G such that [a,b,¢]A = [—a,b, —c]. We have the spinor norm
map
0: G(R) - R*/(R¥)?

and that kerf = G(R)°.
The group SL,(R) acts on V(R) to the right via

[a,b,c] ’ ( i: g ) ($$y) = [a1 b,c](a:r. + ﬂy,‘y:{: + 5?})

See [GKZ]. If we use the isomorphism V(R) =~ S;(R), this action is stated
as

X-g="9Xg

for g € SLy(R) and X € S3(R). This action preserves the form (, ) and
we have an exact sequence

1 — {+1} - SL(R) —» G(R)® - 1.
In particular, we have

G(R)® ~ SLy(R)/ £ 1 = PSLy(R).
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To simplify the notation, we will frequently view an element g € SLy(R)
as an element of G(R). Now let

G ={9 € G(R)|Lg = L} = {g € G(R)|Log = Lo}
be the stabilizer of the lattice L in G(R).

Lemma 2.1. G, NG(R)® = PSLy(Z).

Proof. Suppose g = ( : '? ) € G NG(R)%. Then

a?,av,7%,2aB, a8 + 7,276, 5%, 86,8° € Z.

If any of o, 3,7, 6 is 0, then it is clear that g € SL2(Z). So suppose none
of these are 0. Then write

o= k\/ﬁ’ﬂ:f\/a,’y:m\/’r_', ana 5:?1\/-;,

where p,q,r, and s are square-free integers. Note that «f3,+é must be
integers. Since o/ is an integer, we see that p = ¢. Similarly p =r = s.
Since 1 = aé — By = ,/p(kn — €m), we have p = 1. Hence g € PSLy(Z).

Corollary 2.2. Gy, = PSLy(Z) UAPSL,(Z).
As in §1, we let M > 0 be an integer, and let (X,Y) = M~1(X,Y).
Let L[]‘M = ML(]., LM = (L()‘M)2. Let
Er(M) = {g € G|g acts trivially in Lj/M Ly}

and let E(M) = E (M) N G(R)°. Observe that if M|N, then E(M) D
E(N). As usual, let

F(M):{(: g)eSLQ(ZN(: ?)z(é [1’) (modM)}.

For any subgroup I' SLy(Z), we let I' = (TU—T)/4+1 C PSLy(Z). Recall
that SLy(Z)/T'(M) o SLy(Z/MZ), and |SLy(Z/MZ)| = M3 [Tp (1—25).
The crucial fact to our construction is the following.

Proposition 2.3. For any odd prime p, we have

E(p) = T(2p).
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Proof. Let F(p) be the full inverse image of E(p) under the map SLy(Z) —
PSLy(Z). 1t is not difficult to show that

g:(: g)EF(p)@QZE ,  B,7 = 0(mod 2p).

Thus we have a homomorphism

F(p) — (Z2/2pZ)} ~ {£1}

a f
761—“:1,

where the subscript 2 denotes the 2-torsion subgroup. This map is onto
and has the kernel I'(2p). Thus F(p)/T'(2p) ~ {#1}. The Proposition

now follows.

3. Examples

We take D as in §1 such that 1; € D. First we determine the fomula
for e.

Lemma 3.1. Let X = (X1, X;) such that (X, X) > 0. If X; = [ai, b, c],
then

e(X) = sgn(bico — bacy).

Proof. Note that [z,y, z] is orthogonal to [a, b, ¢] if and only if yb— Jzc —
3za = 0 if and only if [z,y,z] is Euclidean orthogonal to [—3¢, b,—3a].
Hence one vector which is orthogonal to X;, X3 is

1 1 1 1
Z = [—'2‘01,51,"561]>< [—562,52,—502]
1

1
= —[0132‘2 - bzaz, _—(ﬂlcz = 61(12)15162 == C1bz]-
2 2

Note that (Z,7) < 0 since Z is orthogonal to span(X). Now Z, = a
sgn(bica—e1b2) Z for some a > 0. It is clear that ¢( X)) = sgn(det( X,sgn(byco—
¢1b;)Z)). But det(X ,sgn(byca—c15:)Z) = sgn(byca—e1b2)(—(Z, Z)). Hence
e(X) = sgn(bic; — c1b,).

Note that E(M)x = 1. This follows from the fact that if U is a regular
hyper plane of V, and o is an isometry of I/ into V, then there are exactly



58 Young Ho Park

2 extensions of ¢ to O(V) and one is a symmetry times the other [O].
So E(M)x C {e, 7}, where 7 is the symmetry with respect to the line
orthogonal to the hyperplane span(X). But #(7) = 1, where # denotes the
spinor norm as before. Thus we have E(M)x = 1.

Next observe that

(3.1) I, hg, M) = 0(g)d(r,h, M)
for g € G, and
(3.2) 7, h, M) = 08(g)d (1, h, M)

for g € EL(M). Recall that APSL(2,Z) C G, and 6()) = —1.

Proposition 3.2. If all prime factors of M are congruent to 1 mod 4,
then (7, h, M) is identically 0.

Proof. For g = ( : ’g ) € SLy(Z), g € Er(M) if and only if

(3.3) o? = —1 (mod 2M), B =~=0mod M'),

where M’ =lem(2, M). By assumption, z* = —1 has a solution a mod
2M . Note that —ea is a solution, also. Take § = —a, and 3 = v = 0. This
choice of e, 3, v, § satisfies (3.3) and af — By = —a® = 1 mod 2M. Since
SLy(Z)/T(2M) ~ SLy(Z/2MZ), there exists a g € SLy(Z), g congruent
a g
v 6
from (3.2).

Now let M =p =
mod p. Take e; = [0,1,

to mod 2M so that Ag € E(M). The proposition now follows

3 (mod 4) be a prime so that —1 is a nonsquare
0], €y = [1,0, -—1] € V, and let h[) = [61,62]. Let

Ly = {X € L*|(X, X) = (ho, ko), X = ho(pL)}.

Lemma 3.3. L; = hoI'(p).

Proof. For any X € L;, there exists an element ¢ € G(Q) such that
hog = X. Since G(R) = PSL,(R) U APSLy(R), there exists an ele-

ment(: ?)EPSLz(R)suchthatg:(: ?)org:/\(: ‘g)
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Suppose g = A ( : ? ) Then hgg = ho (mod pL) implies that

2ay = 0 (mod 2p),ad + By = 1 (mod p),2838 = 0 (mod 2p),

—a’+49% =1 (mod 2p), —af ++6 = 0 (mod p), —3%+6% = —1 (mod 2p),

Since ad — v = 1, we have aé = 1 (mod p), 8y = 0 (mod p). Thus
a?, #?,4%,68% and af3, Bv,78, 8a are all integers. So «, 3,7,8 € Z. Since
aé = —1 (mod p) and 36 = 0 (mod p), we have 3 = 0 (mod p). But

then 62 = —1 (mod p), which is impossible. Hence g = ( (; ? ), and

g € PSL,(Z) by the similar argument as above. Now hqg = hg (mod pL)
if and only if

ay =0 (mod p),ad + By =1 (mod p), 36 = 0 (mod p),

a® — 4% =1 (mod 2p),af — v6 = 0 (mod p), 3> — §* = —1 (mod 2p).

Since aé—fv = 1, we have a? —9% = 52— 62 = 1 (mod 2). Hence hog = hy
(mod plL) if and only if

ay =0 (mod p),ad + By =1 (mod p), F6 =0 (mod p),

a’ —4* =1 (mod p),af — v = 0 (mod p), % — 6* = —1 (mod p).

Again, aé — fv = 1 shows that aé = 1 (mod p). Hence g = v = 0 (mod
p) and @ = 6 = £1 (mod p). Therefore g € I'(p). The inverse inclusion is
clear.

Theorem 3.4. Let e = [0,1,0],e2 = [1,0,—1] € V, and hy = [e1,€2].
Then for any prime p =3 (mod 4), we have (7, ho, p) # 0.

Proof. Let J(7, ho,p) = ¥ ,50a(g)e(rg) be the Fourier expansion of 4.
Then, by the Proposition 2.3 and Lemma 3.3, we have

a(l))= 3, eX)= 3 elhog)=—|I(p)/T(2p)| = —6.
Xely 2 €l(p)/T(2p)
mod TI'(2p)
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