EXAMPLES OF HOLOMORPHIC SIEGEL MODULAR FORMS OF WEIGHT 3/2

Young Ho Park

In [K] Kudla has generalized the Hecke's construction [He] to produce holomorphic Siegel modular forms of genus n and weight $\frac{1}{2}(n+1)$ as an integral of a non-holomorphic theta-series. Even though the existence of nonzero such forms was proved, no concrete examples were given. In this paper we consider the case n = 2 and construct non-trivial examples corresponding to each prime $p \equiv 3 \pmod{4}$.

1. Introduction

Let V be a **Q** vector space with non-degenerate symmetric **Q**-bilinear form (,) of signature (n, 1). Let $L_0 \subset V$ be a lattice such that $L_0 \subset L_0^*$, where

$$L_0^* = \{ v \in V | (v, v') \in \mathbf{Z} \text{ for all } v' \in L_0 \}$$

is the dual lattice. Let $L = L_0^n$ and $L^* = (L_0^*)^n$. Let G = SO(V) viewed as an algebraic group defined over **Q**. Let

$$E_L = \{g \in G(\mathbf{Q}) | gL_0 = L_0 \text{ and } g \text{ acts trivially in } L_0^* / L_0 \}$$

be the group of units and let

$$E = E_L^+ = E_L \cap G(\mathbf{R})^0,$$

where $G(\mathbf{R})^0$ is the connected component of identity. Let

$$D = \{Z \in V(\mathbf{R}) | (Z, Z) = -1\}^{0}$$

be one component of the hyperbolid of two sheets in $V(\mathbf{R})$, and we will identify the tangent space $T_Z(D)$ to D at Z with Z^{\perp} . We fix an orientation

Received December 21, 1992.

Supported by TGRC-KOSEF 1991.

of $V(\mathbf{R})$ and determine an orientation of $T_Z(D)$ such that for every properly oriented basis $\{w_1, w_2\}$ for $T_Z(D)$ the basis $\{w_1, w_2, Z\}$ is properly oriented for V. Note that $G(\mathbf{R})^0$ preserves the orientation.

Let $X \in V(\mathbf{R})^n$ such that (X, X) > 0. Then $\operatorname{span}(X)^{\perp}$ intersects with D at a single point, say Z_0 . Define

$$\epsilon(X) = \begin{cases} 1 & \text{if } X \text{ is properly oriented basis for } T_{z_0}(D) \\ -1 & \text{otherwise} \end{cases}$$

An element $h \in L^*/L$ is called *non-singular* if, for any choice of representative $h' \in L^*$ for h, the following conditions hold:

(1) $(h', h') \notin M_n(\mathbf{Z}).$

(2) If M is the least positive integer such that $M(h', h') \in M_n(\mathbb{Z})$ then M(h', h') is invertible modulo M.

For $X \in M_n(\mathbf{C})$, we let $e_n(X) = e^{i\pi tr(X)}$. If $X \in V^k$ and $Y \in V^{\ell}$, then we let $(X, Y) = ((X_i, Y_j)) \in M_{k,\ell}(\mathbf{Q})$. The main result of [K] is then the following.

Theorem 1.1. For non-singular $h \in L^*/L$ and for $\tau \in \mathcal{H}_n$, the Siegel space of genus n,

$$\vartheta(\tau, h, L, (,)) = \sum_{\substack{X-h \in L\\(X,X)>0, mod \in E}} \epsilon(X) |E_X|^{-1} e_n(\tau(X,X))$$

is a holomorphic Siegel modular form of weight $\frac{1}{2}(n+1)$.

In this paper, we take V to be the space of binary quadratic forms

$$[a, b, c](x, y) = \frac{1}{2}ax^{2} + bxy + \frac{1}{2}cy^{2}$$

over **Q**. We choose the standard basis for **Q** and fix isomorphisms $V \simeq \mathbf{Q}^3 \simeq S_2(\mathbf{Q})$ as follows:

$$\frac{1}{2}ax^2 + bxy + \frac{1}{2}cy^2 \mapsto [a, b, c] \mapsto \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

Here we view \mathbf{Q}^3 as a space of row vectors. We will use any of these isomorphisms to represent an element of V, whichever is proper at the given situation.

Define a form (,) on V of signature (2, 1) by

$$(X, X) = ($$
discriminant of $X) = b^2 - ac = -det(X)$

where $X = [a, b, c] \in V$. We begin with the lattice $L_0 = 2\mathbf{Z} \times \mathbf{Z} \times 2\mathbf{Z}$ so that $L_0^* = \mathbf{Z}^3$. Then for any positive integer M, we let

$$(X,Y)_M = M^{-1}(X,Y), \quad L_{0,M} = ML_0.$$

Note that the dual lattice to $L_{0,M}$ with respect to $(,)_M$ is again $L_0^* = \mathbb{Z}^3$. Let $L = L_0^2$. For $h \in L^*/ML$, non-singular, let

$$\vartheta(\tau, h, M, L) = \vartheta(\tau, h, L_{0,M}, (,)_M)$$

=
$$\sum_{\substack{X \equiv h(ML) \\ (X,X) > 0, \text{ mod } E}} \epsilon(X) |E_X|^{-1} e_n(\tau(X, X)).$$

2. Groups of units

We will continue to use the notations as in §1 so that we have G = SO(2,1). $G(\mathbf{R})$ has two connected components

$$G(\mathbf{R}) = G(\mathbf{R})^0 \cup \lambda G(\mathbf{R})^0,$$

where $\lambda \in G$ such that $[a, b, c]\lambda = [-a, b, -c]$. We have the spinor norm map

$$\theta: G(\mathbf{R}) \to \mathbf{R}^{\times}/(\mathbf{R}^{\times})^2$$

and that $ker\theta = G(\mathbf{R})^0$.

The group $SL_2(\mathbf{R})$ acts on $V(\mathbf{R})$ to the right via

$$[a,b,c] \cdot \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} (x,y) = [a,b,c](\alpha x + \beta y, \gamma x + \delta y).$$

See [GKZ]. If we use the isomorphism $V(\mathbf{R}) \simeq S_2(\mathbf{R})$, this action is stated as

$$X \cdot g = {}^{\iota}gXg$$

for $g \in SL_2(\mathbf{R})$ and $X \in S_2(\mathbf{R})$. This action preserves the form (,) and we have an exact sequence

$$1 \to \{\pm 1\} \to SL_2(\mathbf{R}) \to G(\mathbf{R})^0 \to 1.$$

In particular, we have

$$G(\mathbf{R})^{\mathbf{0}} \simeq SL_2(\mathbf{R})/\pm 1 = PSL_2(\mathbf{R}).$$

To simplify the notation, we will frequently view an element $g \in SL_2(\mathbf{R})$ as an element of $G(\mathbf{R})$. Now let

$$G_L = \{g \in G(\mathbf{R}) | Lg = L\} = \{g \in G(\mathbf{R}) | L_0g = L_0\}$$

be the stabilizer of the lattice L in $G(\mathbf{R})$.

Lemma 2.1.
$$G_L \cap G(\mathbf{R})^0 = PSL_2(\mathbf{Z}).$$

Proof. Suppose $g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in G_L \cap G(\mathbf{R})^0$. Then

 $\alpha^2, \alpha\gamma, \gamma^2, 2\alpha\beta, \alpha\delta + \beta\gamma, 2\gamma\delta, \beta^2, \beta\delta, \delta^2 \in \mathbf{Z}.$

If any of $\alpha, \beta, \gamma, \delta$ is 0, then it is clear that $g \in SL_2(\mathbb{Z})$. So suppose none of these are 0. Then write

$$\alpha = k\sqrt{p}, \beta = \ell\sqrt{q}, \gamma = m\sqrt{r}, \text{ and } \delta = n\sqrt{s},$$

where p, q, r, and s are square-free integers. Note that $\alpha\beta, \gamma\delta$ must be integers. Since $\alpha\beta$ is an integer, we see that p = q. Similarly p = r = s. Since $1 = \alpha\delta - \beta\gamma = \sqrt{p}(kn - \ell m)$, we have p = 1. Hence $g \in PSL_2(\mathbf{Z})$.

Corollary 2.2. $G_L = PSL_2(\mathbf{Z}) \cup \lambda PSL_2(\mathbf{Z})$.

As in §1, we let M > 0 be an integer, and let $(X, Y) = M^{-1}(X, Y)$. Let $L_{0,M} = ML_0, L_M = (L_{0,M})^2$. Let

 $E_L(M) = \{g \in G_L | g \text{ acts trivially in } L_0^*/ML_0\}$

and let $E(M) = E_L(M) \cap G(\mathbf{R})^0$. Observe that if M|N, then $E(M) \supset E(N)$. As usual, let

$$\Gamma(M) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(\mathbf{Z}) | \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{M} \right\}.$$

For any subgroup $\Gamma SL_2(\mathbf{Z})$, we let $\overline{\Gamma} = (\Gamma \cup -\Gamma)/\pm 1 \subset PSL_2(\mathbf{Z})$. Recall that $SL_2(\mathbf{Z})/\Gamma(M) \simeq SL_2(\mathbf{Z}/M\mathbf{Z})$, and $|SL_2(\mathbf{Z}/M\mathbf{Z})| = M^3 \prod_{p|M} (1-\frac{1}{p^2})$. The crucial fact to our construction is the following.

Proposition 2.3. For any odd prime p, we have

$$E(p) = \overline{\Gamma}(2p).$$

Proof. Let F(p) be the full inverse image of E(p) under the map $SL_2(\mathbf{Z}) \to PSL_2(\mathbf{Z})$. It is not difficult to show that

$$g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in F(p) \Leftrightarrow \alpha^2 \equiv 1, \quad \beta, \gamma \equiv 0 \pmod{2p}.$$

Thus we have a homomorphism

$$F(p) \to (\mathbf{Z}/2p\mathbf{Z})_2^{\times} \simeq \{\pm 1\}$$

$$\begin{pmatrix} lpha & eta \\ \gamma & \delta \end{pmatrix} \mapsto lpha,$$

where the subscript 2 denotes the 2-torsion subgroup. This map is onto and has the kernel $\Gamma(2p)$. Thus $F(p)/\Gamma(2p) \simeq \{\pm 1\}$. The Proposition now follows.

3. Examples

We take D as in §1 such that $1_2 \in D$. First we determine the fomula for ϵ .

Lemma 3.1. Let $X = (X_1, X_2)$ such that (X, X) > 0. If $X_i = [a_i, b_i, c_i]$, then

$$\epsilon(X) = sgn(b_1c_2 - b_2c_1).$$

Proof. Note that [x, y, z] is orthogonal to [a, b, c] if and only if $yb - \frac{1}{2}xc - \frac{1}{2}za = 0$ if and only if [x, y, z] is Euclidean orthogonal to $[-\frac{1}{2}c, b, -\frac{1}{2}a]$. Hence one vector which is orthogonal to X_1, X_2 is

$$Z = \left[-\frac{1}{2}c_1, b_1, -\frac{1}{2}c_1\right] \times \left[-\frac{1}{2}c_2, b_2, -\frac{1}{2}c_2\right]$$

= $\frac{1}{2}[a_1b_2 - b_1a_2, \frac{1}{2}(a_1c_2 - c_1a_2), b_1c_2 - c_1b_2].$

Note that (Z, Z) < 0 since Z is orthogonal to $\operatorname{span}(X)$. Now $Z_0 = \alpha$ $\operatorname{sgn}(b_1c_2-c_1b_2)Z$ for some $\alpha > 0$. It is clear that $\epsilon(X) = \operatorname{sgn}(\det(X,\operatorname{sgn}(b_1c_2-c_1b_2)Z))$. But $\det(X,\operatorname{sgn}(b_1c_2-c_1b_2)Z) = \operatorname{sgn}(b_1c_2-c_1b_2)(-(Z,Z))$. Hence $\epsilon(X) = \operatorname{sgn}(b_1c_2-c_1b_2)$.

Note that $E(M)_X = 1$. This follows from the fact that if U is a regular hyper plane of V, and σ is an isometry of U into V, then there are exactly

Young Ho Park

2 extensions of σ to O(V) and one is a symmetry times the other [O]. So $E(M)_X \subset \{e, \tau\}$, where τ is the symmetry with respect to the line orthogonal to the hyperplane span(X). But $\theta(\tau) = 1$, where θ denotes the spinor norm as before. Thus we have $E(M)_X = 1$.

Next observe that

(3.1)
$$\vartheta(\tau, hg, M) = \theta(g)\vartheta(\tau, h, M)$$

for $g \in G_L$ and

(3.2)
$$\vartheta(\tau, h, M) = \theta(g)\vartheta(\tau, h, M)$$

for $g \in E_L(M)$. Recall that $\lambda PSL(2, \mathbb{Z}) \subset G_L$ and $\theta(\lambda) = -1$.

Proposition 3.2. If all prime factors of M are congruent to 1 mod 4, then $\vartheta(\tau, h, M)$ is identically 0.

Proof. For
$$g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(\mathbf{Z}), \lambda g \in E_L(M)$$
 if and only if
(3.3) $\alpha^2 \equiv -1 \pmod{2M}, \quad \beta \equiv \gamma \equiv 0 \mod M',$

where $M' = \operatorname{lcm}(2, M)$. By assumption, $x^2 = -1$ has a solution $\alpha \mod 2M$. Note that $-\alpha$ is a solution, also. Take $\delta = -\alpha$, and $\beta = \gamma = 0$. This choice of α , β , γ , δ satisfies (3.3) and $\alpha\delta - \beta\gamma = -\alpha^2 \equiv 1 \mod 2M$. Since $SL_2(\mathbf{Z})/\Gamma(2M) \simeq SL_2(\mathbf{Z}/2M\mathbf{Z})$, there exists a $g \in SL_2(\mathbf{Z})$, g congruent to $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \mod 2M$ so that $\lambda g \in E_L(M)$. The proposition now follows from (3.2).

Now let $M = p \equiv 3 \pmod{4}$ be a prime so that -1 is a nonsquare mod p. Take $e_1 = [0, 1, 0], e_2 = [1, 0, -1] \in V$, and let $h_0 = [e_1, e_2]$. Let

$$L_1 = \{ X \in L^* | (X, X) = (h_0, h_0), X \equiv h_0(pL) \}.$$

Lemma 3.3. $L_1 = h_0 \Gamma(p)$.

Proof. For any $X \in L_1$, there exists an element $g \in G(\mathbf{Q})$ such that $h_0g = X$. Since $G(\mathbf{R}) = PSL_2(\mathbf{R}) \cup \lambda PSL_2(\mathbf{R})$, there exists an element $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in PSL_2(\mathbf{R})$ such that $g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ or $g = \lambda \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$.

Suppose
$$g = \lambda \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
. Then $h_0g \equiv h_0 \pmod{pL}$ implies that
 $2\alpha\gamma \equiv 0 \pmod{2p}, \alpha\delta + \beta\gamma \equiv 1 \pmod{p}, 2\beta\delta \equiv 0 \pmod{2p},$
 $-\alpha^2 + \gamma^2 \equiv 1 \pmod{2p}, -\alpha\beta + \gamma\delta \equiv 0 \pmod{p}, -\beta^2 + \delta^2 \equiv -1 \pmod{2p},$
Since $\alpha\delta - \beta\gamma = 1$, we have $\alpha\delta \equiv 1 \pmod{p}, \beta\gamma \equiv 0 \pmod{p}$. Thus
 $\alpha^2, \beta^2, \gamma^2, \delta^2$ and $\alpha\beta, \beta\gamma, \gamma\delta, \delta\alpha$ are all integers. So $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$. Since
 $\alpha\delta \equiv -1 \pmod{p}$ and $\beta\delta \equiv 0 \pmod{p}$, we have $\beta \equiv 0 \pmod{p}$. But
then $\delta^2 \equiv -1 \pmod{p}$, which is impossible. Hence $g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, and
 $g \in PSL_2(\mathbb{Z})$ by the similar argument as above. Now $h_0g \equiv h_0 \pmod{pL}$

$$\alpha \gamma \equiv 0 \pmod{p}, \alpha \delta + \beta \gamma \equiv 1 \pmod{p}, \beta \delta \equiv 0 \pmod{p},$$

 $\alpha^2 - \gamma^2 \equiv 1 \pmod{2p}, \alpha\beta - \gamma\delta \equiv 0 \pmod{p}, \beta^2 - \delta^2 \equiv -1 \pmod{2p}.$

Since $\alpha\delta - \beta\gamma = 1$, we have $\alpha^2 - \gamma^2 \equiv \beta^2 - \delta^2 \equiv 1 \pmod{2}$. Hence $h_0g \equiv h_0 \pmod{pL}$ if and only if

$$\alpha \gamma \equiv 0 \pmod{p}, \alpha \delta + \beta \gamma \equiv 1 \pmod{p}, \beta \delta \equiv 0 \pmod{p},$$

 $\alpha^2 - \gamma^2 \equiv 1 \pmod{p}, \alpha\beta - \gamma\delta \equiv 0 \pmod{p}, \beta^2 - \delta^2 \equiv -1 \pmod{p}.$

Again, $\alpha\delta - \beta\gamma \equiv 1$ shows that $\alpha\delta \equiv 1 \pmod{p}$. Hence $\beta \equiv \gamma \equiv 0 \pmod{p}$ and $\alpha \equiv \delta \equiv \pm 1 \pmod{p}$. Therefore $g \in \Gamma(p)$. The inverse inclusion is clear.

Theorem 3.4. Let $e_1 = [0,1,0], e_2 = [1,0,-1] \in V$, and $h_0 = [e_1,e_2]$. Then for any prime $p \equiv 3 \pmod{4}$, we have $\vartheta(\tau,h_0,p) \neq 0$.

Proof. Let $\vartheta(\tau, h_0, p) = \sum_{g>0} a(g)e(\tau g)$ be the Fourier expansion of ϑ . Then, by the Proposition 2.3 and Lemma 3.3, we have

$$a(1_2) = \sum_{\substack{X \in L_1 \\ \text{mod } \Gamma(2p)}} \epsilon(X) = \sum_{g_1 \in \Gamma(p)/\Gamma(2p)} \epsilon(h_0 g_1) = -|\Gamma(p)/\Gamma(2p)| = -6.$$

Acknowledgements. I would like to thank S. Kudla for many crucial discussions and for his constant encouragement at the University of Maryland.

References

- [GKZ] B. Gross, W. Kohnen, D. Zagier, "Heegner points and derivatives of *L*-series II", Math. Sci. Research Inst., 1989.
- [H] E. Hecke, Zur Theorie der elliptischen Modulfunklionen, Math. Ann. 97(1929), 210-242.
- [K] S. Kudla, Holomorphic Siegel Modular Forms Associated to SO(n, 1), Math. Ann. 256(1981), 517-534.
- [R] B. Ribenboim, "Algebraic Numbers", Wiley-Interscience, 1972.