ON A STRUCTURE SATISFYING AN ALGEBRAIC EQUATION $\overline{\overline{X}} = a^2X + \sum_{p=1}^r A_p(X)T^p$

Lovejoy S. Das

Differentiable manifolds with almost contact structures were investigated by W. M. Boothby - H. C. Wang [1], D. E. Blair [2], S. I. Goldberg - K. Yano [4], and among others. S. Sasaki [3] defined the notion of (ϕ, ξ, η, g) -structure on a differentiable manifold and showed that the structure is closely related to the almost contact structure. The purpose of this paper is to study a manifold with differentiable structure defined by an algebraic equation $\overline{X} = a^2X + \sum_{p=1}^r A_p(X)T^p$ and obtain its integrability conditions. In particular this manifold reduces to an almost r-contact hyperbolic manifold.

The results of this paper have been announced by the author in Abstracts, American Mathematical Society [8].

1. Introduction

Let us consider an n-dimensional (n=m+r) real differentiable manifold M^n of class C^{∞} . Let there exist a C^{∞} function F, $r(C^{\infty})$ contravariant vector fields T^1, T^2, \dots, T^r and $r(C^{\infty})$ 1-forms A_1, A_2, \dots, A_r satisfying the following conditions:

(1.1)
$$\overline{\overline{X}} = a^2 X + \sum_{p=1}^r A_p(X) T^p,$$

where a is any nonzero complex number. Let

$$(1.2) \overline{X} = F(X),$$

Received May 7, 1992.

(1.3)
$$\overline{T}^p = 0$$
, for $p = 1, 2, \dots, r$

(1.4)
$$A_p \overline{X} = 0$$
, for an arbitrary vector field X

$$(1.5) A_p T^p = -a^2,$$

Let M^n be endowed with the Riemannian metric tensor g such that

(1.6)
$$A_q X \stackrel{\text{def}}{=} g(T^q, X), \text{ for } q = 1, 2, \dots, r.$$

(1.7)
$$g(\overline{X}, \overline{Y}) = -a^2 g(X, Y) - \sum_{p=1}^r A_p(X) A_p(Y),$$

where q is a nonsingular metric tensor.

We suppose that F gives to M^n a differentiable structure defined by an algebraic equation (1.1). It is well known that a manifold is an almost r-contact metric manifold if it is of dimension 2n + r and $a = \pm i$.

Let us define

$$(1.8) 'F(X,Y) \stackrel{\text{def}}{=} g(X,\overline{Y})$$

Barring X in (1.8) we obtain

(1.9)
$$'F(X,Y) = g(\overline{\overline{X}}, \overline{Y})$$

which in view of (1.1) and (1.6), yields

(1.10)
$$'F(\overline{X},Y) = a^2 g(X,Y) + \sum_{p=1}^r A_p(X) A_p(Y),$$

Barring Y in (1.8) we obtain

$$(1.11) 'F(X,Y) = g(\overline{X}, \overline{Y}),$$

which with the help of (1.7) yields

(1.12)
$$'F(X,\overline{Y}) = -\{a^2g(X,Y) + \sum_{p=1}^r A_p(X)A_p(Y)\}.$$

Thus from (1.10) and (1.12) we get

(1.13)
$$F(X, \overline{Y}) = -'F(\overline{X}, Y).$$

Replacing X by T^q in (1.8) and making use of (1.3), we get

(1.14)
$$'F(T^q, Y) = 0.$$

Barring X in (1.13) and making use of (1.1) and (1.14) we get

$$(1.15) 'F(\overline{X}, \overline{Y}) = -a^{2\prime}F(X, Y).$$

Also barring Y in (1.7) and with the help of (1.3) and (1.4) we get

$$(1.16) g(\overline{X}, Y) = -g(X, \overline{Y}).$$

Thus from (1.8) and (1.16) we have

(1.17)
$$'F(X,Y) = -'F(Y,X).$$

Hence F(X, Y) is skew symmetric.

2. COMPLETE INTEGRABILITY CONDITIONS OF DIFFERENTIAL MANIFOLD M^n

The Nijenhuis tensor for the (1,1) tensor field F can be written as

(2.1)
$$N(X,Y) = [\overline{X}, \overline{Y}] + \overline{[X,Y]} - \overline{[X,\overline{Y}]} - \overline{[X,Y]}.$$

Thus in view of (1.1), we have

(2.2)
$$N(X,Y) = [\overline{X}, \overline{Y}] + a^{2}[X,Y] + \sum_{p=1}^{r} A_{p}([X,Y])T^{p} - \overline{[X,\overline{Y}]} - \overline{[X,Y]}$$

Definition 2.1. The differentiable manifold M^n is completely integrable, if the Nijenhuis tensor vanishes.

Theorem 2.1. In order that a differentiable manifold be completely integrable, it is necessary that

(2.3)
$$\sum_{p=1}^{r} A_p([\overline{X}, \overline{Y}]) T^p = 0.$$

Proof. Barring X in (2.2) and using (1.1) we get

$$(2.4) N(\overline{X}, Y) = a^{2}[X, \overline{Y}] + \sum_{p=1}^{r} A_{p}(X)[T^{p}, \overline{Y}] + a^{2}[\overline{X}, Y]$$

$$+ \sum_{p=1}^{r} A_{p}([\overline{X}, Y])T^{p} - \overline{[\overline{X}, \overline{Y}]} - a^{2}\overline{[X, Y]}$$

$$- \sum_{p=1}^{r} A_{p}(X)\overline{[T^{p}, Y]}.$$

Now barring the whole equation (2.4) and making use of (1.1), we obtain

$$(2.5) \quad \overline{N(\overline{X},Y)} = a^{2}\overline{[X,\overline{Y}]} + \sum_{p=1}^{r} A_{p}(X)\overline{[T^{p},\overline{Y}]} + a^{2}\overline{[X,Y]}$$

$$-a^{2}\overline{[X,\overline{Y}]} - \sum_{p=1}^{r} A_{p}(\overline{[X,\overline{Y}]})T^{p} - a^{4}[X,Y]$$

$$-a^{2}\sum_{p=1}^{r} A_{p}(\overline{[X,Y]})T^{p} - a^{2}\sum_{p=1}^{r} A_{p}(X)[T^{p},Y]$$

$$-\sum_{p,q=1}^{r} A_{p}(X)A_{q}(\overline{[T^{p},Y]})T^{q}$$

In consequence of equations (2.4) and (2.5) we have

$$(2.6) \quad \overline{N(\overline{X},Y)} + a^2 N[X,Y] = \sum_{p=1}^r A_p(X) \overline{[T^p,\overline{Y}]} - \sum_{p=1}^r A_p(\overline{[X},\overline{Y}]) T^p$$

$$-a^2 \sum_{p=1}^r A_p(X) [T^p,Y] - \sum_{p,q=1}^r A_p(X) A_q(\overline{[T^p,Y]}) T^q.$$

Now in view of the equation

(2.7)
$$N(T^p, Y) = a^2[T^p, Y] + \sum_{p=1}^r A_p(X)[T^p, Y]T^p - \overline{[T^p, \overline{Y}]}.$$

and (2.6) we obtain

(2.8)
$$\overline{N(\overline{X},Y)} + a^{2}N(X,Y) = -\sum_{p=1}^{r} A_{p}(X)\{N(T^{p},Y)\}$$
$$-\sum_{p=1}^{r} A_{p}([X,Y])T^{p}$$

For the complete integrabilty of the manifold M^n , the equation (2.8) reduces to (2.3).

Theorem 2.2. For a completely integrable manifold M^n , we have

(2.9)
$$\sum_{p=1}^{r} A_p(X)\{[T^p, \overline{Y}] - \overline{[T^p, Y]}\} + \sum_{p=1}^{r} A_p([\overline{X}, Y])T^p$$
$$= \sum_{p=1}^{r} A_p(Y)\{[\overline{X}, T^p] - \overline{[X, T^p]}\} + \sum_{p=1}^{r} A_p([X, \overline{Y}])T^p.$$

Proof. Barring X and Y in (2.4) and using (1.1), we obtain respectively the following

$$(2.10) N(\overline{X}, Y) = a^{2}[X, \overline{Y}] + \sum_{p=1}^{r} A_{p}(X)[T^{p}, \overline{Y}] + a^{2}[\overline{X}, Y]$$
$$+ \sum_{p=1}^{r} A_{p}([\overline{X}, Y])T^{p} - \overline{[\overline{X}, \overline{Y}]} - a^{2}\overline{[X, Y]}$$
$$- \sum_{p=1}^{r} A_{p}(X)\overline{[T^{p}, Y]}.$$

and

$$(2.11) N(X,\overline{Y}) = a^{2}[\overline{X},Y] + \sum_{p=1}^{r} A_{p}(Y)([\overline{X},T^{p}]) + a^{2}[X,\overline{Y}]$$

$$+ \sum_{p=1}^{r} A_{p}([X,\overline{Y}])T^{p} - \overline{[X,Y]} - \sum_{p=1}^{r} A_{p}(X)\overline{[X,T^{p}]} - \overline{[X,\overline{Y}]}.$$

Thus from (2.10) and (2.11), we have

$$(2.12N(\overline{X},Y) - N(X,\overline{Y}) = \sum_{p=1}^{r} A_p(X)\{[T^p,\overline{Y}] - \overline{[T^p,\overline{Y}]}\}$$

$$+ \sum_{p=1}^{r} A_p([\overline{X},Y])T^p - \sum_{p=1}^{r} A_p([X,\overline{Y}])T^p$$

$$- \sum_{p=1}^{r} A_p(Y)\{[\overline{X},T^p] - \overline{[X,T^p]}\}$$

Now putting N(X,Y) = 0 in (2.12) we obtain (2.9).

3. NON UNIQUENESS OF THE ALGEBRAIC EQUATION

In this section we take C^{∞} manifold M^n admitting a C^{∞} tensor field f of the type (1,1), $r(C^{\infty})$ 1-forms $A_1, A_2, A_3, \dots, A_r$ and C^{∞} contravariant vector fields T^1, T^2, \dots, T^r and we define the following relations:

(3.1)
$$\mu(f(X)) \stackrel{\text{def}}{=} \overline{\mu(X)} - \sum_{p=1}^{r} \alpha(X) T^{p},$$

(3.2)
$$T^{p} \stackrel{\text{def}}{=} \mu(T^{p}), \text{ for } p = 1, 2, \dots, r,$$

$$(3.3) 'A_p(X) \stackrel{\mathrm{def}}{=} A_p(\mu(X)) - \alpha(f(X)).$$

where α is some scalar function and μ is a nonsingular vector valued function.

Theorem 3.1. In a differentiable manifold the algebraic equation defined by

$$F^{2}(X) = a^{2}X + \sum_{p=1}^{r} A_{p}(X)T^{p},$$

is not unique, if and only if (3.2) and (3.3) hold.

Proof. Putting f(X) for X in (3.1) and making use of (1.1) and (3.1) we get

$$\begin{split} \mu(f(f(X))) &= \overline{\mu f(X)} - \sum_{p=1}^r \alpha(f(X)) T^p, \\ &= a^2 \mu(X) + \sum_{p=1}^r A_p(\mu(X)) T^p - \sum_{p=1}^r \alpha(X) \overline{T}^p, \\ &- \sum_{p=1}^r \alpha(f(X)) T^p, \end{split}$$

which in view of (1.3) yields

$$\mu(f(f(X))) = a^2 \mu(X) + \sum_{p=1}^r A_p(\mu(X)) T^p - \sum_{p=1}^r \alpha(f(X)) T^p.$$

Since μ is a nonsingular vector valued linear function, thus making use of (3.2) and (3.3) we obtain

$$f(f(X)) = a^{2}X + \sum_{p=1}^{r} \{A_{p}(\mu(X)) - \alpha(f(X))\}'T^{p}.$$

or

$$f(f(X)) = a^2 X + \sum_{p=1}^{r} {}' A_p(X)' T^p.$$

Therefore, the algebraic equation defined by (1.1) is not unique.

Theorem 3.2. Let there be two algebraic equations satisfying (1.1) in M^n and related by (3.1) then we have

$$(3.4) a^2 \alpha(X) = A_p \mu(f(X)),$$

$$\alpha(T^p) = 0,$$

and

(3.6)
$$\alpha \neq' A_p$$
.

Proof. The proof of (3.4) follows in consequence of (3.3) and (1.1). Putting T^p for X in (3.4) we at once get (3.5). (3.6) follows immediately after putting 'A_p for α in (3.5), thus giving 'A_p('T^p) = 0, which is not true because of (1.5) hence $\alpha \neq' A_p$.

References

- W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math., 68(1958). 721-734.
- D. E. Blair, The theory of quasi-Sasakian structures, Journal of Differential Geometry; 1(1967), 331-345.
- S. Sasaki and Y. Hatakeyama, Differentiable manifolds with certain structures which are closely related to almost contact structure II, Tohoku Math. J., Vol. 13 (1961), 281-294.
- S. I. Goldberg and K. Yano, Noninvariant hypersurfaces of almost contact manifolds, J. Math. Society, Japan; Vol. 22 (1970), 25-34.
- M. Prvanovic, Holomorphically projective transformation in a locally product space, Mathematica Balkanica, Vol. 1 (1971), 195-213.
- K. Yano, Differential Geometry on complex and almost complex spaces, Pergamon Press, New York (1965).
- A. Gray, Some examples of almost Hermitian manifolds, Illinoios J. Math. 10(1966), 353-366.
- L. Das, On a structure satisfying an algebraic equation $\overline{\overline{X}} = a^2X + \sum_{p=1}^r A_p(X)T^p$, Abstracts American Mathematical Society; Vol.II(1990), 513-514.
- L. Das, On derivations with almost r-contact metric manifold, Publications Mathematicae Debrecan, Hungary, Vol. 35(1988).
- [10] L. Das, On almost r-contact metric manifold, Comptes Rendus del' Academie Bulgare des Sciences, Vol. 32 (1979) 11-714.

DEPARTMENT OF MATHEMATICS, KENT STATE UNIVERSITY, TUSCARAWAS CAMPUS, NEW PHILADELPHIA, OHIO 44663, U.S.A.