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SUPERCOMPACTNESS, PRODUCTS
AND THE AXIOM OF CHOICE

B. Banaschewski

It is shown that the Axiom of Choice holds in ZF iff the product of any
supercompact spaces is supercompact, while the same result for Ty-spaces
and its analogue for frames can be proved without Choice.

Recall that a topological space X is called supercompact if it has only
trivial covers, that is, every open cover of X actually contains X. Obvi-
ously, this means that X has a largest proper open subset.

We note that such spaces do in fact occur widely. Thus for any partially
ordered set P with zero(=smallest element), the collection U P of all up-
sets W C P(z > y € W implies z € W) is a supercompact topology on P,
and hence any subtopology of ¢ P will be supercompact. This covers, for
instance, all injective Ty-spaces, that is, continuous lattices equipped with
the topology of Scott open set [2]. These, in turn, include all Sierpinski
cubes, and consequently every Ty-space is a subspace of a supercompact
To-space. Alternatively, any space X determines a space X obtained by
adding a new point to X such that X is an open subspace of X and the
only neighbourhood of the new point is the total space; evidently, X is
supercompact.

At the same time, supercompactness is rather an extreme form of com-
pactness, especially since a supercompact space must be fairly unsepa-
rated: such a space may be Ty but if it is 7} it is a singleton or empty.
In view of this, it is noteworthy that, in Zermelo-Fraenkel set theory, the
foundational position of supercompactness is the same as that established
by Kelley [4] for compactness.

The Aziom of Choice holds iff the product of any supercompact spaces
is supercompact.
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Given supercompact spaces X;(z € I) with largest proper open subsets
S; C X;, and X = ILX; with the projections p; : X — X;, put T' =
U{p7'[S:]|i € I}. We claim this is the largest proper open subset of X.

Let, then, W be any proper open subset of X and consider any U C W
such that

U=pthn---Np;[Un)

for open Uy C X;,; Since U is also proper, Uy # X;, for some k, hence
Ur C S;,, and thus U C pal[S,-k] C T. This shows that W C T since W
is the union of such U. To see that T # X, choose ¢; € S; for each 7 € I:
then ¢ = (¢;)ier € T.

Conversely, for any family (E;);c; of non-void sets, take any element
* & UE; and define spaces X; with underlying sets F; U {*} and open sets
@, {+}, and E; U {x}. Obviously these X; are supercompact, and hence
X = I1X; is supercompact by hypothesis. Now, put W; = p;*{*}, and for
z € E; let # € X be the point such that #; = z and Z; = * for j # :. Then
Z & W; and therefore UW; # X. It follows that, C meaning complement,

B # CUW;)=nNCW,; =nCp; (%)
= Np;'[E] =1E;,

proving the Axiom of Choice.

We note that the spaces involved in the second part of this proof will,
in general, be badly non-7y. There is a good reason for this, namely:

Any product of supercompact Ty-spaces is supercompact.

Going back to the place in the first part of the above proof where the
Axiom of Choice is invoked by picking ¢; € S; in X; for each ¢ € I, consider
any = € S; in X;. Then S; C C{z} and thus S; = C{z}, so that, for any
z,y € S; in X;, {z} = {y} and therefore = = y for Ty-spaces. Thus, there
is only one point in X; outside S;, for each ¢ € I in the present situation,
and this eliminates the need for the Axiom of Choice at this stage.

The last result leads to a further condition equivalent to the Axiom of
Choice. For any space X, let X? be the Tj-reflection of X, that is, the
quotient space of X obtained by identifying points with equal neighbour-
hood filters. Obviously X and X° have isomorphic lattices of open sets so
that X© is supercompact iff X is. Now we have, in Zermelo-Fraenkel set
theory:

The Aziom of Choice holds iff any product space 11.X; s supercompact
whenever 11X? is supercompact.
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Given the Axiom of Choice and (X;);e; such that ¥ = IIX? is su-
percompact, it follows that each X? is supercompact since the projections
pi : Y — X?induce frame embeddings (=preserving (] and ) U ~» p; ' [U]
for the open sets U/ of X?. Hence each X;, and therefore I1X;, is super-
compact, the latter by our first result.

For the converse, it suffices to deduce that I1X; is supercompact for
any family of supercompact spaces, but this follows immediately from the
fact that TIX? is supercompact, by our second result.

An alternative to the first part of this proof would be to use the result
of Banaschewski [1] that the Axiom of Choice is equivalent to the condition
that (ITX;)° = ITX? for any family of spaces.

Finally we note that, again in analogy with compactness but consid-
erably easier to prove, we have:

Any coproduct of supercompact frames is supercompact.

Recall, first, that a frame is a complete lattice L in which x AV S =
V{zAtlt € S} forall z € L and S C L, and a frame homomorphism
is a map h : L — M between frames which preserves all finitary meets,
including the unit e, and arbitrary joins, including the zero 0. Any family
(Li)ier of frames has a coproduct &L;, and supercompactness, naturally,
means there exists a largest element strictly smaller than the unit. For
general facts about frames see Johnstone [3].

Let, then, L = §L; with coproduct maps k; : L; — L and assume
each L; is supercompact, with s; € L; the largest element smaller than
the unit. Note that, as a consequence of this, each k; : L; — L has a left
inverse {; : L — L;, defined such that

Gk; = idy,, Eki(z) = { g g f ?; for j # 1.
e

Now let s = V{ki(s:)] € I}. We claim this is the largest element of L
smaller than the unit.
To begin with, indeed s < e since s = e implies, for any j € I,

e=li(e) = \V{Gki(si)li € I} = s5,
a contradiction. Further, for any a < e, if
e=ky(z))A- Ak (z,) < a

for some z) € L;, then x < s by the same argument as in our first proof,
and since a is the join of these z we have a < s, as desired.
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In conclusion, we remark that supercompact frames are as ubiqui-
tous for frames as supercompact spaces are for spaces: For any frame L,
“adding a new top” produces a supercompact frame L such that L =
{:c S L|:zr < s} for the largest s < e of L. This makes every frame an
“open” quotient of a supercompact frame. In particular, it follows that
there is a large supply of supercompact frames that are not isomorphic to
a topology.
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