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GENUS POLYNOMIALS OF DIPOLES

Jin Ho Kwak and Jaeun Lee

The genus distribution of a graph G is the sequence gg, ¢1, - - -, where g,
is the number of different 2-cell embeddings of GG into the closed orientable
surface of genus m. J. L. Gross et al. computed the genus distribution
for a bouquet of circles, and asked for the genus distribution for other
interesting graphs. In this paper, we compute the genus distribution for
dipoles; that is, the multigraph having 2 vertices and multiple edges joining
them.

1. Introduction

Let G be a finite connected graph allowing loops and multiple edges
with vertex set V(G) and edge set E(G), and let | X'| denote the cardinality
of a set X. Convert G to a digraph by replacing each edge of G with a
pair of oppositely directed edges. By N(v), we denote the set of directed
edges starting at v € V(G). An embedding of G into a closed surface S
is a mapping 7 : G — S of G into S that corestricts to a homeomorphism
t: G — (). If every component of S — (G, called a region, is an open
disk, then the embedding ¢ : G — § is called a 2-cell embedding. Two
embeddings?: G — S and j : G — S of a graph G into an oriented surface
S are equivalent if there 1s an orientation-preserving homeomorphism £ :
S — S such that hi = j. A rotation scheme p for a graph G is a map
which assigns a cyclic permutation p(v) of N(v) to each v € V(G). It is
well known (see, for example, [3] or Chapter 3 of [6]) that every rotation
scheme p for a graph (¢ determines a 2-cell embedding of G into an oriented
surface S, and every 2-cell embedding of GG is determined by such a scheme;
in fact, there is a one-to-one correspondence between the set of rotation
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schemes for G and the equivalence classes of 2-cell embeddings of (G into
an oriented surface S. Throughout this paper, all surfaces are closed and
orientable, all embeddings of graphs into surfaces are 2-cell embeddings,
and the number of embeddings means the number of equivalence classes

of embeddings.

The genus distribution of a graph G is defined to be the sequence {g,,}
such that g,, is the number of embeddings of the graph G into the surface
of genus m. The genus polynomial of the graph G is defined by

9[Gl(z) = go + q1z + g2z* + - - + gnz™,

where N is the highest genus in which G has a 2-cell embedding. Since
knowing the genus polynomial implies knowing the genus distribution, we
aim to compute in this paper the genus polynomial of the dipole D,,, which
consists of two vertices joined by n edges.

To get acquainted with the problem, we give an example of the em-
beddings of a particular dipole. Let G = D, which can be drawn as
follows:

€1

For each edge ¢;, let €] denote the edge ¢; with the direction from v to w
and e] the inverse edge of ef for 1 = 1,2,3. We can easily construct two
nonequivalent embeddings of D3 into the sphere 5?:
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it Dy — 52

j:D3— §2

117

These two embeddings ¢ and j are determined by the rotation schemes

and

pile) = (ef &f €

pi(v) = (ef ef e}

),

)1

pilw) = (e7 e e3),

pi(w) = (€7 €5 €3),

respectively. Note that these two embeddings are actually planar. The
following figures show two different embeddings of D into the torus 7.

>

€1

k:D.—T

>

Their corresponding rotation schemes are

and

pr(v) = (ef ef ef

pe(v) = (ef ﬁér 63

);

)1

pr(w) = (e €5 e3),

pe(w) = (e} e3 e ).
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In fact, the only possible embeddings of D3 into any surface are the above
four, as will be shown in Section 3.

2. Rotation schemes for the dipole D,

For every rotation scheme p for G, let r(G, p) and g(G, p) denote the
number of regions and the genus of the surface in the embedding of G
determined by p, respectively. Then we have g(G,p) = (2 — [V(G)| +
|E(G)| — r(G,p)) by the invariance of the Euler characteristic. Thus,
computing g(G, p) is equivalent to computing r(G, p) for a given graph G
and a rotation scheme p for G. Moreover,

N | =

9(Dap) = 5(2 =2+ n = r(Dusp)) = 5(n ~ r(Dn, ).

F

Hence, we get
Lemma 1. For any rotation scheme p for D,,

T(Dn': p) = Qg(Dﬂ:p)

In particular, the numbers n and r(D,,, p) are either both even or both odd.

Let ¥, be the set of all cyclic permutations in the symmetric group
S,. For any o € S,,, let j(o) = (j1,...,7a) be the cycle type of o, i.e., j;
is the number of k-cycles occurring in the presentation of o as the product
of disjoint cycles.

Let eq,...,e, be the edges of D,, and v, w the vertices of D,,. Let ¢} be
the edge with the direction from v to w and e the inverse edge of e} for
each i = 1,...,n. Let p be a rotation scheme for D, viewed as a permu-
tation on the directed edge sets of D,, and let 7 denote the permutation
(ef er)---(ef e;) of the directed edges of D,. Then, the regions of the
embedding associated with the rotation scheme p are given by the cycles
of the permutation p(v)p(w)3. Moreover, the number r(D,, p) of regions
of the embedding equals the number of disjoint cycles of p(v)p(w)3 (cf.
Theorem 2.1 in [5]).

For each rotation scheme p for D,, by writing p(v) = (ef ef -+ €f )
and p(w) = (ey e, -+ €, ) we can define p : V(D,) — E, by p(v) =
(1 ky -+« k) and p(w) = (1 €, -+ £,). To simply further computations,
we identify a rotation scheme p for D, with the map p: V(D,) — X,.
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Lemma 2. For each rotation scheme p for D,,
n
T(Dm P) = Z.?k’
k=1

where (71, ..., Jn) ts the cycle type of p(v)p(w).
Proof. Let (el ---) be a cycle occurring in the presentation of p(v)p(w)s
as the product of disjoint cycles. Then the cycle (e ---) is of the form

(e pw)(er) p()B(p(w)(e7)) p(w)B(p(v)Bp(w)(€e]))  ---),

where every odd term is an edge from v to w and every even term is an
edge from w to v. This cycle is completely determined by the subcycle
consisting of their odd terms, and this subcycle corresponds to the cycle

(i p)p(w)(i) (p(v)p(w))*(E) — ---)

in p(v)p(w). This correspondence is clearly one-to-one from the set of
disjoint cycles of p(v)p(w)3 onto the set of disjoint cycles of p(v)p(w). In
particular, the number of disjoint cycles of p(v)p(w)f is equal to that of
p(v)p(w). This completes the proof.

Remark. A region of the embedding associated with a rotation scheme p
is given by a cycle of the permutation p(v)p(w)3. The number of sides
of the region equals the length of the corresponding cycle in p(v)p(w)3,
which is two times the length of the corresponding cycle in p(v)p(w), as
shown in the proof of the above lemma.

Let g, denote the number of embeddings of the graph D, into the
surface of genus m, or equivalently having n — 2m regions, such that their
corresponding permutation p satisfies p(v) = (12 --- n). Let

9(Da)(z) = Go + 17 + Jaz" + -+
Then by the symmetry of D,, we have the following theorem.

Theorem 1.
9[D.](2) = (n — 1)! g[D,](2).

We will compute g[D,](z) in the following section by using D. M.
Jackson's counting formula concerning the cycle structure of permutations

([7D)-



120 Jin Ho Kwak and Jaeun Lee

3. Genus polynomials and Stirling numbers

Let o denote the cycle (12 --- n) throughout this section. In Section
2, we have seen that the number g, of embeddings of D, into the surface
of genus m with p(v) = o equals the number of p : V(D,) — X, such
that p(v) = o and the permutation p(v)p(w) has exactly n — 2m disjoint
cycles. Hence, to compute g[D,](z), we need to count the number of
T € X, with the property that o7 has exactly k cycles for each fixed
number k. Jackson denoted this number by egc")(l); we write 1t as e(n, k).
Note that this number e(n, k) means the number of embeddings of D,
into the surface having exactly k regions such that their corresponding
permutation g satisfies p(v) = o, that is, e(n, k) = ook

The Stirling numbers of the first kind s(n, k), (say the Stirling numbers
simply), are defined as the coefficients of

n

r(z—1)(z—-2)---(z—n+1)= Z (n,k)z

Jackson computed the number e(n, k) in terms of the Stirling numbers

s(n+1,k) as follows ([7], Theorem 5.4):

n—k
&, (£+k+1)q(n+1,€+k+1).

L=

We summarize our discussions as the following theorem.
Theorem 2.
(251
9[D.)(z) = (n—1)! > e(n,n—2m)a™,

m=0

] = {4n—-2m+1
>

n —2m

)s(n+1,€—|—n—2m+1).

£=0

To estimate the number e(n, k), define

flz)=z(z—1)(z—2)---(z—n) and g¢(z)= f(n—z),
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so that
n+1

f(z) = s(n+1,k)z"

h=0
By taking the k-th derivative of (—1)"* f(z) = g(z), we get

(1™ =) = ¢¥(2) = (-1)* F P (n — o)
and

(=) F18(0) = (=1)%¢M(0) = 1P (n).
But, f9(0) = k!s(n + 1, k). Hence, we have

Lemma 3. For any k,

F®(n) = (1) 1 kls(n + 1, k).

Now, we state a formula for e(n, k).

Theorem 3.

—2 ; :
5 e ms(n +1,k) if n — k is even,
A\ ) { 0 if n —k is odd.
Proof. From f(z) = Y71, s(n+ 1, h)z", we have
n+1
B = S hh=1)-(h—k+1s(n+1,R)"*
h=k
n+1
= kls(n+1,k) 4+ Z h(h—1)---(h—k+1)s(n+ l.lh)a:h_k
h=k+1
n—k
= Kls(n4+LE) 4+ Y (€+2)--(L4+k+Ds(n+ 1,641+ k)z"
£=0
Thus,
lf(k](n)
- )
! n—k
=—s(n+1,k)+ D> (£+2)--(L+k+1)s(n+1,£+1+k)n'
L £=0

] n—k 2
= %s(n + 1L, k)+ kl(n+1) (n i 1 ;::D (€+ ;’-}- L)s(n +1,64+1+ F\:)n*’)

k!
= —s(n+1,k)+ kl(n+1)e(n, k).
1
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Hence,

e(n, k) = ———(fF(n) — k!s(n + 1,k)).

k'n(n +1)
Now, Lemma 3 gives

1
n(n+1)
This completes the proof.

e(n, k) = (=1)*1s(n 4 1,k) — s(n + 1, k)).

By using Theorem 3, we can rewrite Theorem 2 as follows.

Theorem 4.

n—1
—2n-1)!"&
_ l.,n—2 e
an 1) Y s(n+1,n—2m)z

m=0

9[Dx)(z) =

Corollary 1.

(1) The mazimum and minimum genera of D, are ["T_I] and 0, respec-
tively.

(2) There are exactly (n — 1)! planar embeddings of D,,.
(3) There are exactly = (n+1){(n—1)(n—2) toroidal embeddings of D,,.

(4) The number of embeddings of D, having only one region is

(n—1)le(n,1) = { A ifn s odd,

0 if n is even.

For example,

9[D:)(z) = L.

9[Ds](z) = 2(1+z).

g[D4)(z) = 6(1+5z).

g[Ds)(z) = 24(1 + 15z + 8z?).

g[De|(z) = 120(1 + 35z + 84z?).

g[D7)(z) = 720(1 + 70z + 46927 + 1802°).
g[Ds](z) = 5040(1 + 126z + 18692 + 30442°).

g[Do)(z) = 40320(1 + 210z + 598527 + 26060z + 8064z*).
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Finally, we show that the genus distribution of the dipole D, is strongly
unimodal.

A non-negative sequence {a,} is said to be unimodal if there exists at
least one integer M such that

p1 < a, foralln<M,

and
Qp > Gnyy  for all n > M.

A sequence {a,} is called strongly unimodal if its convolution with any
unimodal sequence {b,} is unimodal. Keilson and Gerber [8] proved that
{a,} is strongly unimodal if and only if

a2 > anyr1an_1 for all n.

For a fixed n, the sequence e(n,n),e(n,n —2),...,e(n,n —2[25]) is
finite. We want to show that

e(n,n —2k)? > e(n,n — 2k — 2)e(n,n — 2k + 2)

for 1 < k < [25%] — 1. Since e(n,n — 2k) = _E(E?:Tﬁ's(n +1,n —2k), it is
sufficient to show that

s(n+1,n—2k)>> |s(n+1,n — 2k — 2)||s(n + 1,n — 2k 4+ 2)|.
But, it is known that

k(n —k+1)
(k—1)(n — k)

for 1 < k < n (See [2] pp. 270-271). This implies that

s(n, k)* > |s(n, k= 1)| |s(n, k +1)|

s(n,k)* > |s(n,k —1)||s(n,k+1)] forl<k<n.
Thus,
s(n+1,n—2k)* > |s(n +1,n — 2k —1)||s(n + 1,n — 2k +1)|
and

s(n+1,n — 2k)* s(n+1,n—2k—1)%s(n+1,n — 2k + 1)*

|s(rn+1,n — 2k —2)| s(n + 1,n — 2k)* [s(n+ 1,n — 2k +
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Hence,

s(n+1,n —2k)? > |s(n+ 1,n — 2k — 2)||s(n + 1,n — 2k + 2)|.

The above discussion gives the following theorem.

Theorem 5. The genus distribution of the dipole D,, is strongly unimodal.

4. Further remarks

Let G be a connected graph and let p be a rotation scheme for G.
Then p induces a multivariate monomial in the following manner. For
each positive integer j, the exponent of the variable z; equals the number
of j-sided regions in the embedding. The sum of these monomials, taken
over all embeddings, is called the embedding polynomial for the graph G.
Recall that a rotation scheme p for D, is identified with p : V(D,) —
Y,. Let p(v) = o and let p(w) = 7. Then the contribution of p in the
embedding polynomial ¢[D,][z;] of D, is the monomial [T;_; z3f, where
jler) = (J1,. .., Jn). Let 2[Dy](2;) denote the polynomial corresponding
to the set {(o0,7) | ¢ = (12---n),7 € ¥,}. Then we have the following
theorem.

Theorem 6.
[Dn)(z;) = (n — 1)1 2[D,](z;)).

For example, if n = 4 then the set {(o,7) | o0 =(1234),7 € £4} has six
elements.

If r=(1234), then o7 = (1 3)(2 4).

If 7=(1243), then o7 = (1 3 2)(4).

If r=(1324), then o7 = (1 4 2)(3).

If = (1342), then o7 = (1 4 3)(2).

If r=(1423), then o7 = (1)(2 4 3).

If 7=1(1432), then o7 = (1)(2)(3)(4) .

Thus, 7[D4)(2;) = 23 +42026 +23, and o Dy)(z;) = 627 + 242526 + 623.
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independently obtained by Dr. R. G. Rieper in his Ph. D. thesis.
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