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On the Validity of SN Ratio in Parameter Design

Sang-lk Kim*

ABSTRACT

In parameter design Taguchi analyzed a statistic which he called signal-to-noise (SN) ratio
by using the experimental design technique. However he gave no justification for using SN
ratios in the optimization procedure of parameter design. In this paper we discuss the
validity of such SN ratios as proper statistics to be analyzed in parameter design. Moreover,
using the real empirical data we examine the appropriateness of SN ratios, and we explain
how transformation technique can be applied in parameter design as an alternative method of

analysis.

1. Introduction

In manufacturing process, there are two types of factors which affect the product’s quality
characteristic. These are called control and noise fators. The control factors are {hose
inputs to the production process which can be adjusted by the operator. Noise factors are
those variables which are difficult, if not possible, to control. These noise factors are the
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main sources of variation in the product’s quality characteristic. In the late 1970’s, Taguchi
(1986) introduced a new statistical quality control method, so called parameter design, to
reduce such product variation cost-effectively.

As an illustration, let § denote the setting of the control factors and let W represent the set
of noise factors in a manufacturing process of the product. The output (quality

F{W; 0). Then the setting of the control factors @ is a set of parameters of the distribution
of Y, and for a given 0 the noise factors generate the distribution of Y. The noise fators are
assumed to be random variables so that Y is also a random variable that is assumed here to be
continuous. The ideal value of Y is called a target value and we denote it by 1. Then the
goal of parameter design is to achieve the minimum dispersion of ¥ with the mean of Y close
to target value .

Statistically, Taguchi employed a loss function in explaining the aim of parameter design
A loss is incurred if Y differs from a target . The objective of parameter design is then to
identify the optimal setting of control factors § that minimizes average loss caused by noise
factors W. In evaluating average loss, Taguchi used a qudratic loss function

Liy,t) = k(y—-1) (11)

, where % is some constant. The average loss R () at the setting ¢ is thus proportional to
mean squared error,

R =E(Ly,t0]=E[kiy—1))=Fk(c" (@ + (ul@®—1)"]. (1.2)

Since the average loss (1.2) consists of two parts of the bias and the variance, we have tc
control the quality characteristic ¥ through both the mean and the variance in order tc
minimize average loss. Therefore, in parameter design we need to devise an objective
measure which takes these two parts into account simultaneously. Taguchi called such
objective measure as signal-to-noise (SN) ratio, and he suggested several kinds of SN ratios
for the different cases of target value. However, Taguchi demonstrated no connection
between SN ratios and the goal of parameter design of minimizing average loss. And some
authors, for example, Leon, ef a/. (1987), Box (1988) criticized such SN ratios and suggested
different methods of analysis.

The aim of this paper is to investigate the validity of SN ratios, and to explain how data
transformation can be used as an alternative method of analysis of parameter design. In
following section, we introduce SN ratios and optimization procedure suggested by Taguchi.
In section 3 we review some criticism about SN ratios. Section 4 deals with the
transformation technique suggested by Box(1988) as an alternative method of analyzing
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parameter design. Finally in section 5, we examine the appropriateness of SN ratios by

analyzing real empirical experiments conducted in industries, and explain how data
transformation can be applied to the analysis of parameter design.

2. SN Ratios and Optimization Procedure

According to the property of the target value of Y, Taguchi(1986) suggested the following
SN ratios.

2-1. Nominal is the best

Here the quality characteristic Y is continuous and the nominal target value, say r = . , is
specified, and the average loss (1.2) increases as Y deviates from 7, in either direction For

this case, Taguchi recommended the following SN ratio, denoted here by (SN),
(SN), = 10 log ¢ L (2.1)

, where v and s are the sample mean and the sample variance, respectively.
2-2. The smaller the better
In this case, Y is continuous, positive and the target value is zero. Then the average ‘oss

R(®) in (1.2) is proportional to E(Y?). For this case Taguchi suggested the SN ratio.
denoted here by (SN),, as a function of the moment estimate of E(Y?).

(SNJ, = 10 /g (-1 3 y?) (2.2)
7=

2-3. The larger the better

This is the case of a continuous quality characteristic which we want to be as large as
possible. If we take the reciprocal 1/Y, then we have the same situation as in the case of
SN ratio (2.2). The SN ratio, denoted by (SN),, suggested by Taguchi is

(SN), = ~10l0g [+ 5 ( —j,—»?] (2.3)
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2-4. Optimization Procedure in Parameter Design.

In parameter design, we carry out the experiments and calculate a SN ratio for each
setting § of control factors. Then we perform the standard analysis of variance(ANOVA
procedure using calculated SN ratios as data, and decompose the control factors into two
groups 0, and 8,, where §, is a subset of control factors having significant effects on the SN
ratio. Taguchi identifies ¢, as dispersion effects which affect the variability of Y as
measured by the SN ratio. Moreover, 8, can also be decomposed into 8, = (4., 8,), where ¢,
is a set of influential factors on the mean, and ¢, of non-influential factors on the SN ratio
and the mean.

To minimize the average loss, Taguchi recommended the two-step procedure such that ‘a°
first find the setting §, = 8, that maximize the SN ratio, (b) and then set §, = §,* at which
E(Y) is close to t as possible. For more details about construction and analysis of parameter
design, refer to Taguchi(1986), Taguchi and Wu(1980), Phadke (1982), or Kackar(1985).

3. Discussion of Taguchi SN Ratios

In two-step optimization procedure, we manipulate the mean u(0) to be close to targe:
value 7 in the second step. Thus, for this two-step procedure to be successful the SN ratio
analyzed in the first step should be functionally independent of u(0). Therefore, we can
easily see that the suitable SN ratio should be a statistic that is independent of ; ().

Consider the first SN ratio (2.1) which is a function of sample coefficient of variation s/V.
Here note that only when » and s are linked in a linear function, the coefficient variation /%
is constant, and thus independent of 3. Consequently we can see that the SN ratio (2.1} is
relevant only when the mean and the variance of Y have a linear relationship. For this case,
we can minimize the average loss (1.2) by applying the two-step procedure : {a) maximize
the SN ratio by controlling g, which affect the SN ratio (b) then use §, (or ¢,) in adjusting:
u( @) close to the value at which (1.2) is minimized.

However, if the mean and the variance of Y are functionlly independent, then the average
loss can be minimized by minimizing the variance first and then minimizing the bias in the
second step. Therefore, for the case of independency, the suitable SN ratio which is
maximized in the first step is some funtion of the variance. For example,

SN = 10 log (s°}. (2.4)

At this point, it is clear that the information about data structure is very important in
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developing a proper SN ratio. And we should make all efforts to get concrete informations
about the relationship between the mean and the variance.

Generally assume that the «(8) and the u(8) are linked in some function g such that
T@ = (o(0)/g(ud)))" is independent of u in a sence that only a subset 8, of § affects
T(8). That is, T(#) is a measure of dispersion which is functionally independent of u.
Then the average loss (1.2), apart from constant, can be expressed as

RO = [glu@n)' TW@)+ pu@ —1)". (2.5)

Then R(#) can be minimized by minimizing 7 (#) by using f, first, and next adjusting ;{6
by contolling @, of 8 = (8,, 8.). Note that the exact minimum can be achieved by adjusting
u(9) to the point u* satisfing 2R(8)/20. = 0, that is

pur=t1—giu*)gtunT* (2.6)

, where T'* is the minimum value of 7 (f) attained in the first step. But if we ignore rhe
second part of the right hand side of (2.6), then the adjustment point is u* = 7.

Moreover, Ledn, et «/.(1987) also discussed the appropriateness of (2.1) from the point of
view of transfer function f. They showed that if the Y is generated by a particular
multiplicative transfer function

Y = f(@elw,d) (2.7)

,where E{e(w, )] = 1and E(Y) = f(0) is a strictiv monotone function of 6, then the SN
ratio (2.1) is appropriate in the two-step optimization procedure. However, it may not be
possible for most actual manufacturing processes to identify the specific mechanistic model s
of manufacturing system.

Now consider the second SN ratio (2. 2) suggested Taguchi. Since (2.2) can be written as

(SN), = —10 log ( }-]- zy> -~ ~10log (§’ +£;_1 s) (2.8)

, we can see that (2.8) is the function of the mean and the variance, and thus it confounds
the location and dispersion effects. For this reason, Box (1988) argues that it is very
doubtful whether we can achieve the minimum variance as well as minimum bias by applying
the two-step procedure. It can be argued in favor of (2.8) that it combines informat:on
about changes in mean and changes in variance. However, if ¥ is dominating part over s' in
(2.8), then the maximization of (2.8) is essentially same as minimization of ¥, instead of
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minimization of s>. And the second step of adjustment is meaningless, and furthermore
misleading. Therefore, it is desirable to analyze the dispersion effect and the location
effect separately.

The same arguments can be justified for the third SN ratio (2.3), since (2.3) is also made
of the mean and the variance of the transformed data 1/Y. Moreover, Box (1988) argues
that (2.3) is likely to be exceptionally sensitive to outliers since it depends on the square of
reciprocals of the data. For this case, we should exploit another form of transformation to
develop a suitable SN ratio.

4. Data Transformation

In the field of design of experiment, the transformation of data has been widely used,
especially when we want to achieve the stabilization in variance, normality, and additivity of
the model. In parameter design, we should decompose the control factors into two groups
which affect the location and the dispersion, respectively, and analyze these two groups
separately in order for the two-step procedure to be successful. For decomposing the control
factors, Box(1988) suggested to use transformation technique, especially variance
stabilization.

Assume that X = k(YY) is a variance stabilization transformation such that Var(X) = ».°
is functionally independent of yx, and suppose further that ¢.° depends only on the subset ¢/,

of 8. Then the average loss (1.2) can be expressed approximately as
ROy~ [ R ol (0] 4+ (ul@)—1) (3.1)

,since o°(8) * (B"{y)) " 6.". Therefore, by analyzing the transformed data X = k£(Y), we
can achive the objective of parameter design with applying the two-step procedure such that
we first find the setting of ¢, at which ¢, is minimized and then adjust the mean of ¥ to
some point at which R ({) is minimized.

In practice. it is convenient to perfrom the second step of adjustment in the transformed
data. For this case, Box (1988) showed that we should adjust E(X) to the point .~

it =kt +% B0 R () (6] (3.2)

. where (¢,*)* is the minimum value of ¢+" obtained in the first step.
As an easy way of finding a suitable transformation, Box (1988) recommended using the

@

power transformation suggested by Box and Cox(1964) such that X = k(Y)= Y". For
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selecting appropriate value « in the power transformation, some quantitity such as ¢-value,
F-value or relative proportion of sum of squares of each effect in the ANOVA procedures
both for the mean and the variance can be plotted with changing value of «. In such
plottings, if we can identify the value of a at which we can decompose the control factors ¢
into 8, and ¢, successfully, then we use such value in the power transformation. In such
optimal transformation, the number of influential factors could be small, and we may also
achieve the additivity of the model. Moreover factors which in the optimal transformation
have influence on variance but not on the mean will have influence on both in another
transformation. This procedure of selecting a suitable « is explained in the examples in
section 5.

And note here that for a power transformation X =Y, the adjustment point (3.2) is
reduced to

T £ G R ST (3.3)

Moreover, if we ignore the second term in the parenthesis of (3.3) then the adjustment

point is approximately

Wt =T (3.4)

5. Examples of Empirical Data

Here, we discuss the validity of Taguchi SN ratios by analyzing real data of experiments
conducted in manufacturing industries.

{ Example 1 ) The experiment in this example was conducted by M.G. White at Military
Aerospace Division of ITT Cannon Company in America. The quality characteristic Y in
this experiment is the thickness of gold plating and the target value is 50 micro-inch.

In the experiment, there are 9 control factors denoted by A, B, C, D, E. F, G. H, I, each
having two levels. The objective was to reduce the variation of Y with it’s mean close to
target value. White used an L, (2") orthogonal array and the actual arrangement of factors
is illustrated in Table | in which the simbol ¢ denotes the error. The thickness values for 20
samples taken from product manufactured at each setting of control factors are shown in
Table 2 with values of SN ratio of {2.1). The details about the whole experiment #re
illustrated in Yum {1991, pp. 221 —237). White performed the usual ANOVA using SN ratio
values as data, and he also did ANOVA using the mean values of 20 samples. According to
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these two ANOVA procedures, it was found that two factors D and C and one interaction
A x B had significant effect on the SN ratio, and only one factor C affected the mean value.
Following these results, White obtained the optimal setting of control factors ty identifying
the levels A, B, D at which the SN ratio is maximized, and identifying the level of C at
which the mean value is close to target value.

( Table 1 : Arrangement in L., (2'°) orthogonal array )

|
i
(

| Run A I AXI ExF D B AxB G H BxC E C A><C e F l
R S R
f 1 11 1 1 11 1 1 1 1 1 1 1 1 1
2 11 1 ] 11 1 2 2 2 2 2 2 2 2
3 J 1 1 1 e 2 2 2 1 1 1 1 2 2 2 2|
IS I B 1 2 2 2 2 2 2 2 2 1 1 1
5 1 2 2 1 102 2 1 1 2 2 1 1 2 2
6 | 1 2 2 1 1 2 2 2 2 1 1 2 2 1 |
7 [ 12 9 2 2 1 1 1 1 2 2 2 2 1 1
8 12 ; 2 2 ] 1 2 2 1 11 1 2 2
9 2 1 9 1 2 1 2 1 2 1 2 1 2 12
U 2 1 2 ] 2 1 2 2 1 2 12 1 2 ]
no 21 9 9 1 2 1 1 2 1 2 2 1 2 |
12 2 1 ¥ 2 12 1 2 1 2 11 2 12
13 2 2 1 i 2 2 1 1 2 2 11 2 2 1
14 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2
15 2 2 ] 2 1 ! 2 1 2 2 T2 1 T
16 2 2 1 2 11 2 2 1 1 2 1 2 2 |
{ Table 2 : Data and SN ratio of gold plating experiment )
' Run . Data SN ratio J
r | o o S R
S | 63 52 57 60 51 64 57 56 61 57 58 51 54 60 54 64 50 54 55 49 21.76 1
L2 59 60 63 61 58 66 53 63 57 61 61 60 73 81 59 62 68 53 60 72 L 19.32
3 60 66 78 83 64 76 8910668 78 52 86 91 69 71 57 73 96 83 60 1461 ’
4 67 77 66 51 53 55 59 58 62 62 81 76 60 58 53 59 55 54 70 60 17.18
5 71 74 78 63 62 67 47 69 49 58 54 80 71 67 62 47 51 66 57 49 15.60 |
6 70 58 69 65 65 74 71 75 75 65 70 64 65 66 55 70 71 74 65 75 LT
poT 61 66 65 74 66 73 73 65 83 81 60 75 77 62 60 69 65 60 89 76 b18.39 }
L8 68 62 4 51 43 59 57 64 53 52 48 58 46 46 47 42 51 48 50 44 17.16 |
9 66 47 67 56 55 56 49 53 39 54 42 46 66 89 42 68 61 46 92 58 1214
10 48 63 69 60 89 81 63 53 68 76 53 67 66 68 69 65 89 67 74 70 - 16.13 \
u o 75 76 75 70 71 70 84 68 75 73 80 76 69 71 70 75 67 68 76 66 24. 03
12 58 55 47 49 59 45 53 56 41 53 61 52 55 55 54 50 53 52 56 55 20.92 |
13 64 65 57 76 54 54 65 60 64 67 62 62 67 57 67 58 55 61 64 56 20. 94
14 45 79 Y7 72 71 99 50 74 77 74 72 96 75 89 98 77 41 77 96 75 13.45
15 84 53 56 64 61 74 57 56 69 65 72 57 48 64 64 67 55 68 56 55 1723 J
57 52 53 52 54 55 55 49 L 24.63

16 61 60 55 50 54 51 50 56 57 55 53 52 1
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As an alternative way of analyzing this data, we transform the data by X =Y “, where « is
real number. For various values of «, we perform the standard ANOVA procedures by
using ¥ and logarithm of standard deviation {n(s) of the transformed data X =Y, and we
calculate the relative proportion of sum of squares of each factor. The relative proportion is
obtained by dividing each sum of squares by total sum of squares. The plottings of these
values of relative proportions against « are shown in Figure 1.

An examination of Figure 1 reveals that the value « = 0, which correspond to the
transformation of X = [»(Y), is appropriate in decomposing the control factors into two sets
0, and §.. For such transformation, we can see that two effects D and F are influential on
the dispersion, and C has influence on the mean. Furthermore, no interaction is influential
so that we can also achieve the additivity.

Moreover, Figure 1 indicates that the analysis of the untransformed original data may be
also appropriate since we can also decompose successfully the control factors at « = 1. For
this case, factor F has influence less significantly than D on the dispersion. Therefore both
for the transformed and the untransformed data, the optimal setting (* can be obtained
approximately by identifying the levels of factors D and F that give the minimum varian:e.
and identifying the levels of C at which the mean value is close to target value. If we
compare these results with those of White, we can see that the blind use of SN rauio
produces wrong conclusion.

Location Effect( Analysis of X J Dispersion Effects( Analysis of /n(S))

-~ wn =23 -3
< ? [=1 <

Relative Proportion (%)
.: :‘J’ T ; 3
Relative Proportion (%)

B
24
o)

o
o=

| R g —geepmppasgngin T X A=

= = 0 01030507 1015290

20 15 10 07 05 0.3 0.1

o [2¢
{ Figure 1 : Plots of Relative Proportions in Gold Plating Experiment )
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( Example 2 ) For further illustration, consider the experiment conducted by Schild and
Pishko at Texas Instrument, Inc. The quality characteristic of the experiment was tensil
strength of the product and the target value was infinity. In this experiment, there are five
control factors (A, B. C, D. E) each having two levels, and four noise factors. For
construction of parameter design, they used an orthogonal arrays L (2*) and L;(2° x4 for
the control factors and the noise factors, respectively. For each setting of control factors,
they replicate L,(2°x4) array twice so that 16 observations of tensil strenth are available.

The L,(2%) array used in this experiment is the same array of the Example 1. The
arrangement of the control factors in L,{2") array and the data are shown in Table 3 and

Table 4. For more details about this experiment, refer to Yum (1991, pp. 271 --281).

( Table 3 : Arrangement in L, (2"))

| CoumnNumber 1 2 3 4 5 6 7 8 9 10 1 12 13 4 15
’ Assigned Effect | A C AXC B e BxC ¢ D AXDDxF F e e e BxF |

{ Table 4 : Data and SN ratio of the Tensil Strenth Expereiment )

i Data
‘ Run 1 9 3 4 5 6 7 8 SN ratio
‘ 1 1135115195170 | 50 1| 10 30| 15 20| 55 80 | 155 120 | 110 105 11. 92
2| 65155 | 155130 | 25 5| 35 50 | 95 1| 140 105 | 280 370 | 95 205 11. 86
I3 210445 | 395335 | 25 25| 70110 | 30 75 | 220 375 | 445 460 | 300 185 35. 14
4 | 530370 | 65300 | 70 50 ' 438385 | 50 75, 20 65 | 320 370 | 465 390 1  35.79
5| 95 70 | 160 100 | 30 40 @ 40 50 | 25 351 35 25| 390230 | 120 80 . 32.85
© 6 1115 65 325230 | 115110 1 35 10| 50 15 | 175 475 | 395 305 | 70 205 29. 88
} 7 185 375 | 315 280 | 175 130 | 380 135 | 80 70 | 100 85 | 350 405 | 365 325 42.78
8 | 410 210 | 555 485 | 80 75 | 550 460 | 60 110 | 25 60 | 365 390 | 520 485 37. 83
9 75 80| 12518 | 70 10| 50 1 1 1145105 | 195 295 | 165 85 7.25

10 1235 110 | 260 130 | 120 110 | 30 50| 35 1| 30 20 | 305245 | 70 105 12. 01
11 | 500 325 | 240 130 | 110 70 | 220 140 | 85 40 | 140 195 | 315 390 | 440 220 40. 80
12 | 580 510 | 280 330 | 60 110 | 145 125 | 85 120 | 20 25 | 360 360 | 400 505 35. 20
100 145 | 220230 | 70 70| 10 1| 50 75| 65 55 | 270 285 | 100 105 11. 99
14 | 200 115 | 215 145 5 251 40 35| 60 30 | 415 245 | 340 320 | 95 85 25.52
15 | 685330 | 260 330 | 15 5 | 115 95| 85 80 | 135 140 | 355 275 | 330 395 25.50
16 | 310 460 | 440 480 5 30| 95105 | 100 110 | 65 5 | 365 270 | 325 375 22.91

p—t
w

Schild and Pishko analyzed the SN ratio (2.3) and found that two effects A, B and two
interactions BxC. AxC were significant on the SN ratio. Moreover two factors D and F
were identified as influential effects in the ANOV A procedure of mean values. Therefore,
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they identified factors A, B, C as dispersion effects, and identified D, F as location effects.
Figure 2 shows the plottings made by same procedure explained in the Example 1. From
the Figure 2 we can infer that the appropriate value of « is about « = 0.3. For such
transformed data, we can see that the single factor B has influencd on the mean, and fac:or
D (and possibly one interaction A xC) are significant on the dispersion.

According to these results, the optimal setting of control factors can be obtained for the
transformed data by identifying the levels of D and B which give the minimum variance and
the maximum mean, respectively. From this example, we can also gain some evidences that
the SN ratio (2.3) might be inappropriate for analyzing this experiment of parameter design.

Location Effect (Analysis of X Dispersion Effects{ Analysis of /n(~ -
907
/‘——.—‘\\
801 —~——
2 / =
< 704 e
o =
2 60f B 2
b —
=}
g 50 2
9 )
13 =
a—} 40 s
3. g
g 30 g
v 20t B*C ©
X <‘\C\ 24
WA T D
\_
P ! 0.1 0.3 1.0 15 20
20 15 1007 05 0.3 0.1 00 30507 1. T
o @

{ Figure 2 ' Plots of Relative Proportions in Tensil Strength Experiment )

6. Concluding Remarks

During the time of preparing this paper, many other empirical data have been examined in
evaluating the appropriateness of Taguchi SN ratios. The other results are not presented
here, because of lack of space. However most of results reveal that the reckless use of SN
ratios suggested by Taguchi is liable to mislead.

Therefore, in order for parameter design to be successful, we should be very cautious in
choosing the suitable statistic to be analyzed. For deciding the proper statistic, some other
simple statistical techniques such as exploratory data analysis method can be employed to
obtain information about the relationship between the mean and the variance of the data.
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