Journal of the Korsan Institute
of Industrial Engineers
Vol 19 No.3, September, 1983

59

gy ol AZEge] B nXE o WY AT
: FORTRAN V2} FORTRAN 77, PASCAL3} Ce] u|at

A Study on the Effects of Programming Languages on Software Complexity
: Comparison of FORTRAN IV vs. FORTRAN 77 and PASCAL vs. €

=
I_"

y =

Jung-mo, Yoon*

Abstract

This paper presents the results of experiments which compare the software complexity be-
tween programming languages, i.e, FORTRAN IV and FORTRAN 77, PASCAL and C lan-
guage, respectively. Each experiment is performed to compare the complexity between pro-

grams of same problems using Halstead’s method based on operator, and McCabe's based on

data flow. As the results of 25 test programs experiments, FORTRAN 77 languages shows su-
periority to FORTRAN IV languages, and C than that of PASCAL languages, in the aspect of

the giobal software complexity,

1. Introduction

The term, software engineering, is first-
ly used to discuss the problem of software
technique at the workshop in Rome in 1969
according as the field of utilization for the
computer is amplified and complicated. Espe-
cially a research is actively performed to
measure the quality of software by the quan-
titative method[1]. Namely the state of
research for software metrics can be pre-
sented as Figure 1. Applying to the software

¥ TS En A A AR

life cycle like this quantitative method may
affect greatly to the improvement of soft-
ware guality and cost reduction[2]. The fact
ahove menticned, can be proved that the
research announcement is active because of
the general recognition of the important
system management in the computer fleld.
Up-to-date according to analyzers, as Fig-
ure 2, among importance of the sofiware
complexity metrics over 70% of system
management activity 1s provided o soitware
maintenance and managementi[2,3]. Absol-
utely, if the complexities of program can be

60

#3E RREXTREE

Data Refer—

" ence 76

‘Halstead Software-

Cyclomatic |

Complexity 77

Hansen’s?S

Numbers . Years of
Publication

Figure 1.

Clagsification of Corplexity Metrics.

194 H3IF 1993. 9

=279 doj7t £ZEQe EP o vjXE P AL AT
: FORTRAN V& FORTRAN 77, PASCALH Ceo| v

i | Software : __ 5
' " Cormaplexity Software Under- ‘Software
i | Metrics - standability “Maintenance
AN -
;.| Software “Software | N[Software Main-
- - Complexity Moadifiability tainability
: Sy Software ----3» Feedback
. Cost- & Tme Testability —>» Control
A ! ——> Measure

Figure 2. Importance of Software Complexity.

firmly recognized, cost and time to maintain,
to repair, and to manage may be reduced.
The purpose of this study, in the problem
of software complexity, is to offer problems
from comparison and analysis of the com-
plexity between different languages. In this
study, comparisons between FORTRAN IV
and FORTRAN 77, and between PASCAL
and C language, using the Halstead’s meth-
od are performed, which is proved the
superioity in the existing measure of the
software complexity at the recent conferenc-
es[4,5]. In order to achieve the purpose of
this study, the form of the analysis by the
research experimental design is mainly used.

2. Analysis and problems of existing soft-

ware complexity

2.1 Complexity measurement in accordance
with program size

(1) Halstead's Software Science Metrics
[6]

As Halstead’s method is based on the size,
its superiority to various possible estimated-
characteristics for the program has been
proved; e.g., line of code, program length,
development effort, language level, number
of paragraph, and problem difficulties.

In order to develop a primitive code orient-
ed to the complexity measurement, we can
use the value of a basic measurement after
a software design is finished and produced.
This value is used to formulate an equation
to calculating the total program length. In
this case, the equation depends on the num-
ber of operators nl, the number of operands
n2, and the total number of operators N1,
the total number of operands N2. This is a
method of using operator and operand as
the components of execution code.

It has tried io measure the scale of soft-

62

RBEETBRaX

ware with the number of token, not line, and
discovered the difference of size in each pro-
gram and program In - the
Halstead's method, the complexity of a pro-
gram is not related to the data flow and con-
trol flow in the program, but to the number

language.

of operators and operands.

2.2 Complexity measurement in accordance
with the control flow of the program

(1) McCabe’s Cyclomatic Complexity[5]
McCabe defined the cyclomatic number, V
(G), as the complexity based on the control

flow of a program, mathemaiically.
V(G)=e—n+2p {1

where, e . number of edges,

n : number of nodes,
p I number of connection

ponents.

com-

As the value of V(G) is increasing, the
more program control flow is complicated. V
((3) is independent with the external size of
program or the paragraph layout order, but
it is only decided by the number of control
flows.

As Figure 3 shows a graph of the contral
flow with 9-edges and 6-nodes, the value of
V(G) is 5. Supposing that a value is re-
turned from outlet-node, f, to in-node, a, in
connection with edge to strongly connected
graph, the graph G is the same as lineally in-
dependent circuit number.

”

‘F
®

ViG)=9-6+2=5

“{d
\\
\\
A
\
\
X
\
\
1
{
!
!
7
/
/
Y 4
4
o

Figure 3. Control Flow Graph and Complexity.

2) Knots Count

Knots Count is a measure based on the
number of structures in the physical position
of the control flow, then the number of mea-

surement of the control structure is the

same as Figure 4[7].

(3) Moreword’s W measurement

22Uy A7t AZEAY EF =0 vAe IFA Y 4T

F1948 #35 1993. 9

:FORTRAN W& FORTRAN 77, PASCAL: C9 vl=

63

IF (CON.NE.0) GO TO 20

TOT=1
GO TO40

1¢ TTOT=0
GO TO 40

20 1IF {CON.ST.TER) GO TO 30
TTOT=1
GO TO 40

30 TTOT=0

40 TF(TTOT.LE.1) GO TO 50
JTOT=ITOT+1
IYOT=TVOT+LA+]

50 STOP
END

(2)

IF (CON.LT.COT) GO TO 10 ()

(©)

(d)
{e)

it
(g)
(b

()
]

Figure 4. Measure of Knots Count.

Moreword’s W measure is an improved
one of McCabe's measure, and this is based
on the Loop in the program which affects
the complexity[7].

Moreword’s W, is defined as the sum of
the number of Loops and cyclomatic number
in the control flow graph.

Therefore, it can be expressed as fol-
lows :

W=V (G) +Number of Loops (2)

2.3 Data Structure of program and Com-
plexity measurement in accordance with
Data Flow

(1) Span in Data Reference

This method is based on the measurement
of data reference in the program. The span
means the number of paragraphs in the iden-

tifier in case of two same references without
any intervention of different references.

(2) Chapin’s Q measurement|[8}

This measurement is based on how to use
the data items in a program. The data can
be classified into 4 types as follows !

(D P data classification : Input data nec-
essary to produce segment,

@ M data classification : Producing or
changing data in the segment,

@ C data classification : Using data to
“Controtling” in the segment,

@ T data classification : Data unchanged
and using in the segment. .

This method is based on the data classifi-
cation which affects the complexit'y of the
program with different densities.

64

RBERXTERL

(3) Henry's measurement of the Infor-
mation flow[9]

This is the complexity measurement based
on information flow in system components.

INFQ=Length * (Fan—in » Fan-out) =+ 2 (3)

where, INFO ; Information flow complexi-

iy,
Length ; Number of source codes,
Fan-in : Number of local flows into
Module A-+number of data
structures from which Module
A retrives information,
Fan-out : Number of local flows from
Module A+the number of
data structures which Module
A updates.

When these conditions are occurred, it de-
fines that there is a sectional flow from
Medule A to Module B.

(I) When A calls B.

(2) When B calls A, so B uses the value of
A at the later stage.

@ When the optional C calls A and B so
it can transmit output-value of A to B.

It is possible for Henry’s et al. complexity
metric to measure interface complexity of
module, but impossible to measure the logic
of module itself.

2.4 Measurement by hybrid methed

Hybrid complexity measurement method
is used to prevent the weak points when
using only one componet in the complexity
measurement by providing more than two
types of the components; e.g, the program
size, dia structure of the program and data
flow, and control flow of the program(2].

[t is Ramamurity’s et al. weighted metric
to analyze both the size of the program and

control flow simultanecusly. Combining
McCabe's V{G)[5] and Halstead's[6] soft-
ware science techniques can actually supple-
ment their weak points. Based on this new
nesting level, this can impose an extra
weighted value to the operator and the oper-
and of control text.

NWI1=[1+d{x) * L(x)]x ; Operator {4)
NW2=[1+d(x) = L(x}]x ; Operator (5)

In case of uéing x as a part of the control
text, d{x)=1 or 0. In accordance with nest-
ing level of the control text L(x) is increas-
ing an extra weighted value one by one

" from 1.

VW=(NWI1+NW2) = Log2(nl +n2) (6}
EW=VW +«[(nl » NW2)/(2*n2)}] (7)

It is suppased that weighted metric pro-
vides reliable EW wvalue but its usefulness
may be used only at the stage of mainte
nance and repair.

There are Hansen's measurement consid-
ering control flow and the size of the pro-
gram or Ramamurity’'s et al. weighted met-
ric, Ovido’s measurement of hybrid form
with data flow and control flow.

3. An examples

3.1 Halstead’s Software Science Metrics[6]

[t is one of the most widely accepted mea-
sures with several empincal studies. It in-
volves metrics defined by some key constitu-
ents of a program implementing an algo-
rithm.

(1) Operators & Operands . An algorithm
conststs of operators and operands, and of
nothing else. Operators fail into three class-
es

zZz o dojrt AXES BEFEe) olXE FF BF AT

H19% H39% 1993, 9

" FORTRAN I & FORTRAN 77, PASCAL% C9of HlZ 65

(8) Basic : + — = *»/// = ().GT.
.GE.LT.LE.NE.EQ..NOT..AND.OR..EQV.
XOR.NEQV.

{b) Keyword : IF THEN ELSE ELSEIF
ENDIF DO DOWHILE GOTO ASSIGN CON-
TINUE ENDDO READ WRITE TYPE
PRINT ACCEPT EOS

(¢} Special : Names of subroutines, func-
tions.

Operands consist of all variable names
and consiants such as, .TRUE. .FALSE. and
Esnn{real). Then. Halstead’s metrics can be
defined based on the number of distinct op-
erations nl, the number of distinct operands
n2, the iotal number of operators N1, and
the total number of operands N2.

(2) Derived Metrics . Halstead defines the
vocabulary of the program as n=nl+n2
{the total number of distinct operators and
operands) and the implementation length as
N=N1+N2. These are meaningful volume
measures of a program. He hypothesizes an
estimator N"=nlLog. nl +n2Log; n2 for N.
A program volume metric V defined as
NLog: n characterizes the size of an imple-
mentation, which can be regarded as the
number of bits necessary to encode the
whole module.

To evaluate the programming effort, pro-
pensity of error, and ease of undersianding,
the program level L of an implementation is
defined as (2/nl) * (n2/N2). It follows that
only the most succinct expression can have
a level of unity. Program difficulty D is the
difficulty of coding an algorithm. and de-
fined as D=1/L, and can be estimated by
D2=1/L" The languages level is L**2/V.
The effort required to generate an algorithm
is E=V/L.

For the smaple program in Figure 5,
Halstead's software science metrics are ex-

emplified in Table 1.

Therefore, the results of Halstead’s soft-

C SUM OF 1 THRU 10000

N=0

SUM =0.0
ION=N+1

SUM=SUM +N

IF (N .LT. 10000) GO TG 10
WRITE (6,20) N, SUM
20 FORMAT (//; SUM OF 1 THRU ',
* 15,18 F10.0)
STOP
END

Figure 5. A sample program

Table 1. The Results of Halstead’s
Software Science metrics

No.of Operator |Number |No.of Operands|Number
= 4 N 6
+ 2 0 2
IF 1 SUM 4
.LT. 1 1 1
GOTO 1 10000 1
WRITE 1 10 2
STOP 1
END 1
, 1
nl=9 Ni=13 nZ==6 N2=16

ware science meirics can he expressed as
follows :

where, n=nl+n2=9+6=15 (8)

66

KBEETRERE

N=N1+N2=13+16=29 9

N"=niLog;n1+n2Log;n2 10
=9Log9+6Log.6=28.53+15.51=44.04
V=NLog.n=29Log,15=113.30 1)),
L=(2/n1)*(n2/N2)=2/9*6/16=0.083 (19
D=1/L=1/0.083=12.05 13
A=L**2V=(0.083)**2%113.30=0.781 1
E=V/L=113.30/0.083=1365.06 15

3.2 McCabe’s Cyclomatic Complexity[5]

MeCabe’s cyclomatic complexity is well
accepted, intuitively reasonable, and easily
calculated by V(G)=e—n+2p. In a strong-
ly connected graph, this cyclomatic number
15 the number of linear independent circuits.
For programs with single entry and single
exit, V((3) is one plus the number of deci-
sions. The graph theoretic metric is indepen-
dent of the program size but depends only
on the decision strueture. Decisien making
of a program affects its error probability
and development time and cost. For the sam-
the of McCabe’s
cyclomatic complexity metrics are shown in

ple program, results

Figure 6.
4. Experiments and results

The languages level of Assembler,
Algols8, Algol68, FORTRAN, PL/I, PAS-
CAL, APL and Basic etc., are shown in
Table Z [6].

As offered 1n the preface, after making a
program individually, for the same problem
{program volume etc.) with FORTRAN IV,
FORTRAN 77, PASCAL and C language,
and making 25 programs(numerical progres-
sion, array, sort etc.) by investigated meth-

V(G@)=e-n+2p
=7-7+2=2

Figure 6. The Results of McCabe's
Cyclomatic Complexity Metrics

Table 2. The Languages Level(1) of each

Language
Languages ‘Average of Lambda
PASCAL 254
APL 242
ALGOL 68 2.12
PL/1 1.53
ALGOL 58 1.12
FORTRAN 1.14
ASSEMBLY 0.88
BASIC 0.81

223y del7t 2Z B4 SFE oAe g B A7

194 3% 1993, 9

' FORTRAN W& FORTRAN 77, PASCAL# C9) ujm 67

od, one of software complexity measurement
methods, with Halstead’s method and then
compared, measured measurement of each
factor and sought its connected correlation.

4.1 Case 1 :FORTRAN I vs. FORTRAN
77 languages[1]

As you see at Table 3, it is decreased as
much as 17.25% for the program line num-
ber of FORTRAN 77 than that of FOR-
TRAN IV, and decreased as much as 11.2%
for the program volume{V) of FORTRAN
77. The program level of FORTRAN 77 is
decreased as much as 1.53%, and language
tevel(4) decreased as much as 8%.

And, as you see at Table 4, it showed high
correlation in the part of the program line
number{r=0.843), number of program vol-
ume(r=0.946), estimated length(r=0.331)
etc., between FORTRAN IV and FORTRAN
77 showed low correlation in the part of the
program languages, language level ete.

Correlation between FORTRAN IV wvs.
FORTRAN 77 in the same problem is :

» Program Length 1 0.843

Correlation : very high
Length : decreased 17.25%
» Program Valume(V): 0.946
Correlation . very high
Number : FORTRAN 77 1s

11.2% highsr than that of FORTRAN ¥
1 0.331
Correlation : low

» Language Level(1)

I showed that correlation to the program
volume(r =0.946) has almost nothing to do
with. With each factor value by using the
Regression of S5PS55 the first regression
equation as follows{20] :

+ Program line Number(L.C)

Y =0.6218X+3.2970 (16
» Program Volume(V)

Y =0.8390X +19.090 {amn
+ Program Level(L)

Y =0.9686X +0.0008 a3
» Language Level(1)

Y =0.5036X +0.3007 19

Table 3. Awverage and standard deviation for each measure
(FORTRAN IV vs. FORTRAN 77 language)

Language FORTRAN V FORTRAN 77 Remarks
Metries Average [Standard Deviation| Average [Standard Deviation| F77/FIV
LC 16033 54920 13266 4049 1725% |

n 22433 51610 23333 5441 401% 1t

N 62733 | 30206 56,033 25.998 1068% |
N* 78039 | 24988 84.988 27090 890% t

A 287.09 154.77 259.94 13743 1120% |

L 0.0552 02207 0.0543 0.2750 153% |

D 20.869 7.3280 21584 7.3649 343% t

A 0.7147 02940 0.6607 0.4466 800% |

E 68315 54175 62115 44799 9.08% |

T 37952 300.96 34508 24338 9.07% |
V(G) 32000 1.2220 2.8666 10973 11.00% |

68 ' 4R

REEXTREE

Table 4. Correlation table between each measure{FORTRAN [V vs. FORTRAN 77 Language)

FIV LC n N N* \'
F77

L D 2 E T V(@

0.843
0.886
0.946
0.945
0.946

HE ot <Zzs o

V(G)

0.777
0.754
0.331
0.869
0.869
0.873

where X : each factor of FORTRAN N,
Y : each factor of FORTRAN 77.

4.2 Case T : PASCAL vs. C language

As you see ai Table 5, it is decreased as
much as 12.5% for the program line number

of C than that of PASCAL, and decreased
as much as 5.8% for the program volume
(V) of C. The program level of C is de-
creased as much as 47.7%, and language
level(4) decreased as much 70.2%.

And, as you see at Table 6, it showed high

Table 5. Average and standard deviation for each Measure(PASCAL vs. C)

Langusge PASCAL C Reamarks
Metrics Average Standard Deviation Average Standard Deviation Iner./Dec.
LC 2400 9691 21.00 11314 125% |
n 1620 5418 18.12 5033 108% ¢

N 7508 41275 7068 63883 58% |
N" 1741 86837 2069 7.700 158% t
v 11505 69.923 10834 89.184 58% |

L 0.088 0023 0046 0.059 47.7% |
D 16.737 18007 2857 11077 414% 1

A 0582 0095 0.173 0512 702% |

E 281650 4397.70 3804.64 3894.90 259% 1

T 156.47 24298 21137 216.38 259% }

correlation in the part of the program line
number(r=0.809%), number of vocabulary(r
=0,826), estimated length(r=0.810) etc.,
between C and PASCAL etc., showed low

correlation in the part of the program lan-
guage, language level ete.

Correlation between C and PASCAL in
the same problem is :

oy doj7t 2TEH0] BF x| ujAs AP AY AT

#19% £3% 15993. 9

: FORTRAN W $} FORTRAN 77, PASCALT C¢f vz 69

Table 6. Correlation table between each measure{PASCAL vs. C Language)

+ Program Length(LC) : 0.843

Correlation : very high

Length : decreased 12.5%
« Vocabulary Number(n) : 0.826

Correlation : very high

Number 1 Cis 10.8% higher

than that of PASCAL

» Language Level(1) —0.303
. very low

I showed that correlation to the program
volume{r=—0.1170) has almost nothing to
do with. With each factor value by using the
Regression of SPSS the first regression

equation as follows[11] :

Correlation

» Program Line Number(LC}

Y =0.9440X 1 4.6939 @0
» Program Volume(V)

Y =—0.1492X +131.2252 Vi)
» Program Level(L)

Y =—0.7783X +0.12569 @
» Language Level(2)

Y=-1.7364X+0.881 @

where X each factor of PASCAL,
Y ! each factor of C.

PAS .| 1C n N N* L D A E T

C
LC | 0.809

n 0.826

N —0.259

N* 0.810

v —0.117

L —0.303

D —0.382

2 —0.303

E —0.258

T —0.258

5. Conclusion

In this paper, the software complexity of
program languages is analyzed and com-
pared using Halstead’s measures.

(1) As a result of the experiment, FOR-
TRAN 77 showed the decrease more in pro-
gram line by 17.25%, in Halstead’s volume
by 11.2% and in McCabe’s V(G) by 11%,
than those of FORTRAN IV anguage. The
program level of FORTRAN 77 is lowered
as much as 1.53%{1].

Also, it is decreased as much as 12.5% in
program line, 5.8% in Halstead’s volume
and 5.8% in program length of C than that
of PASCAL language. The program level of
C is lowered as much as 47.7%

(2) This study, couldn’t present a perfect
estimated value due to the level and the
short steps of the program, but has reflected
the difference in the subjectivity of selecting
criteria of operand and operator, and in the
program logic flow. Also, the component of
C program can be forecasted with the

70 Fis

REERTEa

knowlege of the components of PASCAL
program, which can be acquired by the lin-
ear regression equation for each measures.

{3} In conclusion, this paper, has calculat-
ed and compared the complexity between
different languages by using the Halstead’s
measure for the software complexity. How-
ever, an accurate comparision of complexity
between languages can be achieved by using
the Hybrid measure and/or providing
adequate weights to each languages. Also, in
accordance with the processing methed,
type, characteristics of the flow of the pro-
gram and the proper selection of software, it
may be able to improve the quality of soft-
ware and the program complexity drastical-
ly,

References

1. Sung, KK. and Lee, G.S.(1990), A Study
on Effect the Extensional version of Pro-
gramming Language on Software Com-
plexity, Hannam University, Master The-
sis.

2. Li, H.F. and Cheung, W.K(1987), “An
Empirical Study of Software Metrics”,
IEEE Trans. on Software., Vol, SE.13,
No.6, pp.697 —T08.

3. Yang, H.8.Noh, H.Y. and Baek, C.H.
(1990), “Study for Software Complexity

and Estimation”, Korea Information Sci-
ence Society Review, Vol.8, No.4, pp.89—
96.

4. Yang, H.SNoh, H.Y. and Baek, C.H.
(1990), “For Complexity of the Program
Considering the Formal Grammar”,
Korea Information Science Society, Vol.
17, No.2, pp.665— 668

3. McCabe, TJ.(1976}, “A Complexity Mea-
sure”, IEEE Trans. on Software Engineer-
ing, Vol.5E —2, No.4, pp.308 —320.

6. Halstead, M.(1%77), Element of Software
Science, Elsevier, North-Helland.

7. Woodward, M.Hennel, M. and Heddey, D.
(1979), “A Measure of Contra! Flow
Complexity in Program Text”, [EEE
Trans. on Software Engineering, Vol.SE
-5, pp.45—50.

8. Chapin, N.{(1979), “A Measure of Soft-
ware Complexity”, Proceedings of NCC,
pp.995 — 1002,

9. Henry, S.. and Kafura, D.(1981), “Soft-
ware Structure Metrics Based on Infor-
mation Flow”, IEEE Trans. on Software,
Vol.5E.7, No.5, pp.510—519

10. Ovide, E.(1980), “Control Flow, Data
Flow and Program Complexity”, Pro-
ceedings COMPSAC-80, pp.146 —152.

11, Jung, Y.J.(1990), SPSS/PC+, Crown
Publishing Co.

