BOUNDARY OF MINKOWSKI ARC LENGTH IN MINKOWSKI PLANE

Y. D. CHAI* AND YOUNG SOO LEE

1. Introduction

Chakerian, in [4], generalized Crofton's formula and Poincaré's formula in the Euclidean plane to them in Minkowski plane.

For a convex set K in a Minkowski plane H.Flanders[5] proved the Bonnesen inequality in Minkowski plane:

$$\rho L - A - T \rho^2 \geq 0$$

for all ρ in the interval $[r_{in}, r_{out}]$ where L is Minkowski arc length, A is Euclidean area, T is Euclidean area of isoperimetrix of the Minkowski plane and r_{in} and r_{out} are inradius and outradius respectively.

In this paper, We develop arc length formula and area formula for the parallel set in a Minkowski plane. As an application we obtain boundary of the ratio of Minkowski arc length and Euclidean arc length.

2. Preliminaries

For a centrally symmetric closed convex curve U enclosing area π and with center at the origin O of the Euclidean plane R^2 we shall assume throughout that U is smooth and has positive finite curvature everywhere.

A usual norm $\| \cdot \|$ on R^2 defines a Minkowski metric, m, using the formula

$$m(x,y) = \frac{\|x - y\|}{r},$$

Received June 27, 1994.
Supported by grants from KOSEF and BSRI-94...
where \(\|x - y\| \) is the Euclidean distance from \(x \) to \(y \), and \(r \) is the radius of \(U \) in the direction of vector \(x - y \). The set of points of \(\mathbb{R}^2 \), together with metric \(m \) is the Minkowskian plane, \(M^2 \). Certainly \(U \) is the unit ball in \(M^2 \) and it will be referred to as the indicatrix. Given a norm \(\ell(\cdot) \) on \(\mathbb{R}^2 \), one can define a Minkowski metric \(m \) using the formula

\[m(x, y) = \ell(x - y) \]

so that unit ball is a convex set symmetric with respect to the origin.

To describe the Minkowski geometry associated with \(U \) and its relation to the Euclidean geometry of \(\mathbb{R}^2 \) we begin with two vectors \(e_1 = (\cos \theta, \sin \theta) \) and \(e_2 = (-\sin \theta, \cos \theta) \) which are orthonormal with respect to the Euclidean metric. Now let the boundary of \(U \) be described in polar coordinates by a function \(r(\theta) \). In searching for a substitute for the Frenet frame used in Euclidean geometry we set

\[t(\theta) = r(\theta)e_1(\theta), \quad n(\theta) = \frac{1}{r(\theta)}e_2(\theta) - \left(\frac{1}{r(\theta)} \right)'e_1(\theta). \]

Then we have

\[\frac{dt}{d\theta} = (r(\theta))^2n(\theta), \quad \frac{dn}{d\theta} = -h(\theta) + \frac{d^2h}{d\theta^2}t(\theta) \]

where \(h(\theta) = \frac{1}{r(\theta)} \).

The trace of \(n(\theta) \), \(0 \leq \theta \leq 2\pi \), is a convex set \(I \), which is the so-called isoperimetrix, because it has the minimum boundary length (using the Minkowski definition of length) among all convex sets with a given area. (see [2] and [3].) It is easy to verify that \(I \) is polar reciprocal of \(U \), with respect to the Euclidean unit circle, rotated through deg 90. We shall always denote by \(T \) the area enclosed by \(I \). In terms of radial function \(r \) the function \(h = \frac{1}{r} \) is the support function for the isoperimetrix \(I \). Also \(I \) is up to homothety the unique convex shape which minimizes the Minkowski arc length of the boundary for a given enclosed area.

If \(X : [0, 1] \to \mathbb{R}^2 \) describes a differentiable curve, then
is the Minkowski length of the curve. The Minkowski element of arc length at any point is related to the Euclidean arc length by \(ds = r^{-1}da \).

3. Parallel Set and Geometric Inequalities in \(M^2 \)

DEFINITION 1. Given two bodies \(K \) and \(\tilde{K} \) the homothetic transformation of \(\tilde{K} \) and the Minkowski sum of \(K \) and \(\tilde{K} \) are the sets

\[
e\tilde{K} = \{ey|y \in K\} \quad \text{and} \quad K + \tilde{K} = \{x + y|x \in K, y \in \tilde{K}\} \]

respectively.

The set of convex bodies forms the positive cone of a vector space under these two operations. The "thickening" of \(K \) with respect to \(\tilde{K} \) is given by \(K + e\tilde{K} \) with epsilon positive. When \(\tilde{K} \) is the standard unit ball, this latter set is the set of all points in the plane whose distance from \(K \) is less than or equal to \(e \). The support function of the Minkowski sum satisfies

\[
h_{K + e\tilde{K}} = h_K + eh_{\tilde{K}}.
\]

While \(\tilde{K} \) remains fixed and centered at the origin, we shall frequently wish to translate the set \(K \). Translating \(K \) with respect to the origin corresponds to replacing \(h \) by \(h + acos\theta + bsin\theta \) for some \(a \) and \(b \). ([6]).

DEFINITION 2. Let \(K \) be a convex set of area \(A \) and Minkowskian perimeter \(L \) in a Minkowski plane with isoperimetric \(I \) containing area \(T \). Then \(\epsilon \)-parallel set is the set

\[
K_{\epsilon} = K + \epsilon I,
\]

Let \(K \) be an analytic closed convex curve which contains the origin in its interior. If \(h(\theta) \) is a support function of \(K \), then the radius of curvature of \(K \) at \(q \) is \(h(\theta) + h''(\theta) \) so that the euclidean line element
of \(K \) at \(q \) equals to \((h(\theta) + h''(\theta))d\theta\). Therefore the Minkowski length \(L(K) \) of \(K \) is

\[
L(K) = \int_0^{2\pi} (h(\theta) + h''(\theta)) \frac{1}{r(\theta + \frac{\pi}{2})} d\theta
\]

where \(r(\theta) \) is the radial function for the indicatrix \(U \) of the Minkowski plane if the orientation of \(K \) is positive.

In the following theorem, we calculate Minkowskian perimeter and area of parallel set of convex set.

Theorem 1. Let \(K_t \) be a \(t \)-parallel set of a convex set \(K \). Then

\[
L(K_t) = L(K) + 2Tt, \quad A(K_t) = A(K) + L(K)t + Tt^2.
\]

where \(L \) denotes Minkowskian perimeter and \(A \) denotes Euclidean area.

Proof. The proof is a straightforward calculation. Let \(h(\theta) \) and \(p(\theta) \) be the support functions of \(K \) and \(I \) respectively. Then the support function of \(K_t \) is \(h_t(\theta) = h(\theta) + tp(\theta) \). So we have

\[
L(K_t) = \frac{1}{2} \int_0^{2\pi} (h_t(\theta) + h_t''(\theta)) \frac{1}{r(\theta + \frac{\pi}{2})} d\theta
\]

\[
= \frac{1}{2} \int_0^{2\pi} (h(\theta) + tp(\theta) + h''(\theta) + tp''(\theta)) \frac{1}{r(\theta + \frac{\pi}{2})} d\theta
\]

\[
= \frac{1}{2} \int_0^{2\pi} (h(\theta) + h''(\theta)) \frac{1}{r(\theta + \frac{\pi}{2})} d\theta
\]

\[
+ \frac{t}{2} \int_0^{2\pi} (p(\theta) + p''(\theta)) \frac{1}{r(\theta + \frac{\pi}{2})} d\theta
\]

\[
= L(K) + 2Tt
\]
and

\[A(K_t) = \frac{1}{2} \int_0^{2\pi} \left(h_t^2(\theta) - (h_t'(\theta))^2 \right) d\theta \]

\[= \frac{1}{2} \int_0^{2\pi} \left(h^2(\theta) - (h' (\theta))^2 \right) d\theta \]

\[+ t \int_0^{2\pi} (h(\theta)p(\theta) - h'(\theta)p'(\theta))d\theta \]

\[+ t^2 \frac{1}{2} \int_0^{2\pi} \left(p^2(\theta) - (p'(\theta))^2 \right) d\theta \]

\[= A(K) + L(K)t + Tt^2. \]

Theorem 2. Let \(K \) be a convex set of perimeter \(L \) in a Minkowski plane \(M^2 \) with isoperimetrix \(I \). If we denote \(r_i \) and \(r_o \) by inradius and outradius of \(I \) respectively, then

\[L_e r_i \leq L \leq L_e r_o \]

where \(L_e \) is Euclidean perimeter of \(K \) and \(T \) is area of isoperimetric.

Proof. Let \(D^i \) and \(D^o \) denote the Euclidean disks of radius \(r_i \) and \(r_o \) respectively. Then we have

\[K + tD^i \subseteq K + tI \subseteq K + tD^o. \]

So we have

\[A(K + tD^i) \leq A(K + tI) \leq A(K + tD^o). \]

So from (7) and (12) we have

\[L_e r_i + \pi t r_i^2 \leq L + Tt \leq L_e r_o + \pi t r_o^2. \]

So if \(t \) tend to 0, then we have the desired inequality in (10).

From the Theorem 2 we have the following corollary.
COROLLARY 1. Let K be a convex set with Minkowskian perimeter L and Euclidean perimeter L_e in a Minkowski plane M^2 with isoperimetrix I. If we denote r_i and r_o by inradius and outradius of isoperimetrix I respectively, then $r_i \leq \frac{L}{L_e} \leq r_o$ and $\frac{L}{L_e} = 1$ if and only if M^2 is the Euclidean plane.

An easy corollary of the Crofton formula (Chakerian[4]) is that a convex hull of a closed simple curve has a boundary whose Minkowskian length is less than the Minkowskian length of the curve itself.

So we have the following corollary

COROLLARY 2. Let C be an arbitrary closed curve in M^2, and r_i and r_o inradius and outradius of isoperimetrix I respectively. If we denote the Minkowskian perimeter and Euclidean perimeter of convex hull of C by \bar{L} and \bar{L}_e respectively, then

$$L \leq r_o^2 L_e, r_i^2 \bar{L}_e \leq L.$$

References

Department of Mathematics
Sung Kyun Kwan University
Suwon 440-746
South Korea