DIRECT PROJECTIVE MODULES WITH THE SUMMAND INTERSECTION PROPERTY

Han, Chang Woo, Lee, Bu Young and Choi, Su Jeong

1. Introduction

Throughout this paper, \(R \) is a ring with identity and all modules are unitary \(R \)-modules. We denote the endomorphism ring of \(M \) by \(\text{End}(M) \). The module \(M \) is said to be quasi-projective if, given an \(R \)-homomorphism \(g : M \to L \), for each epimorphism \(\alpha : M \to L \), there exists an endomorphism \(h \) of \(M \) such that \(\alpha \circ h = g \). The module \(M \) is said to be direct projective if, given any direct summand \(A \) of \(M \) and \(\pi : M \to A \) a projection map, for each epimorphism \(\alpha : M \to A \), there exists an endomorphism \(\psi \) of \(M \) such that \(\alpha \circ \psi = \pi \). The concept of direct projectivity is a generalization of quasi-projectivity. The module \(M \) has the summand intersection property if the intersection of two direct summands is again a direct summand. Kaplansky observed that if \(F \) is a free module over a principal ideal domain, then the intersection of any two direct summands of \(F \) is again a direct summand.

In this paper, we consider direct projective modules with the summand intersection property and obtain several conditions so that a direct projective module has the summand intersection property. As a result, we have some properties of a direct projective module.

Theorem 1.1 [1]. The following properties of the module \(M \) are equivalent.

(i) \(M \) is direct projective.

(ii) Every exact sequence \(N \to A \to O \) with \(N \) an epimorphic image of \(M \) and \(A \) a direct summand of \(M \) splits.
Theorem 1.2 [2]. The module M has the summand intersection property if and only if, for every decomposition $M = A \oplus B$ and every $\varepsilon : A \rightarrow B$, the kernel of ε is a direct summand of A.

2. Results

Theorem 2.1. Let M be a direct projective module. If for every decomposition $M = A \oplus B$ and every $\varepsilon : A \rightarrow B$, $\text{Im} \, \varepsilon$ is a direct summand of M, then M has the summand intersection property.

Proof. For every decomposition $M = A \oplus B$ and every $\varepsilon : A \rightarrow B$, assume that $\text{Im} \, \varepsilon$ is a direct summand of M. It is sufficient to show that $\text{Ker} \, \varepsilon$ is a direct summand of A. A is an epimorphic image of M. Since M is direct projective, by applying Theorem 1.1, an exact sequence $0 \rightarrow \text{Ker} \, \varepsilon \rightarrow A \rightarrow \text{Im} \, \varepsilon \rightarrow O$ splits. This implies $\text{Ker} \, \varepsilon$ is a direct summand of A. Hence M has the summand intersection property.

Theorem 2.2. If $M \oplus L$ has the summand intersection property for all the module L, then the module M is quasi-projective.

Proof. Assume that $M \oplus L$ has the summand intersection property for all the module L. Then by Theorem 1.2, every exact sequence $M \rightarrow L \rightarrow O$ splits. Therefore there exists an R-homomorphism $f' : L \rightarrow M$ such that $f \circ f' = I_L$. For given $g : M \rightarrow L$, let $h = f' \circ g$. Then $f \circ h = g$. Hence M is quasi-projective.

Theorem 2.3. If every submodule of a direct projective module M is direct projective, then M has the summand intersection property.

Proof. For every decomposition $M = A \oplus B$ and every $\varepsilon : A \rightarrow B$, $A \oplus \text{Im} \, \varepsilon$ is a submodule of M, and $A \oplus \text{Im} \, \varepsilon$ is direct projective. Clearly A is an epimorphic image of M. According to Theorem 1.1, an exact sequence $O \rightarrow \text{Ker} \, \varepsilon \rightarrow A \rightarrow \text{Im} \, \varepsilon \rightarrow O$ splits. Hence by Theorem 1.2, M has the summand intersection property.
THEOREM 2.4. Let M be direct projective. If $\text{End}(M)$ is a regular ring, then M has the summand intersection property.

Proof. Let $\text{End}(M)$ be a regular ring and consider every $f : A \oplus B \to B \oplus A$ by setting $f = (f_1, f_2)$, where $f_1 : A \to B$, $f_2 : B \to A$ are R-homomorphisms. Then $\text{Im} f$ and $\text{Ker} f$ are direct summands of M. [4, Lemma 3.1] It follows that $\text{Ker} f_1$ is a direct summand of A. Hence by Theorem 1.2, M has the summand intersection property.

THEOREM 2.5. If every finitely generated direct projective module has the summand intersection property, then R is a semihereditary ring.

Proof. Suppose that all finitely generated direct projective modules have the summand intersection property. Let A be a finitely generated ideal of R, $p : R^n \to A$ an epimorphism and $i : A \to R$ a canonical inclusion map. Since R^{n+1} has the summand intersection property, we see from Theorem 1.2 that $\ker (i \circ p)$ is a direct summand of R^n. Hence A is projective module. This means that R is a semihereditary ring.

References

Department of Mathematics
Dong-A University
Busan 604-714, Korea