ON A CONJECTURE OF GRAHAM

SHI MING WEI AND YOUNG BAE JUN

Let A be a finite sequence of n positive integers $a_1 < a_2 < ... < a_n$. Graham [2] has conjectured that $\max\{a_i/(a_i, a_j)\} \geq n$. The conjecture has been verified in some special cases (see references).

In this paper we verify the conjecture in three cases.

A prime p is called a prime factor of A if p is a prime factor of some a_i. Denote by $P(a_i)$ (resp. $P(A)$) the set of all prime factors of a_i (resp. A).

THEOREM 1. If $P(a_k) = \{p_1, p_2, ..., p_s\}$ for some a_k, and $a_i \neq p_1^{i_1}p_2^{i_2}...p_s^{i_s}a_j$ for $i \neq j$, $d_1, d_2, ..., d_s \geq 0$, then $\max\{a_i/(a_i, a_j)\} \geq n$.

Proof. Let $a_i = p_1^{i_1}p_2^{i_2}...p_s^{i_s}b_i$ for all a_i where $i_1, i_2, ..., i_s \geq 0$ and $p_1, p_2, ..., p_s \mid b_i$. Then $b_i \neq b_j$ for $i \neq j$ and $b_k = 1$. So $\max\{b_i/(b_i, b_j)\} \geq n$. Since

$$a_i/(a_i, a_j) = (p_1^{i_1}p_2^{i_2}...p_s^{i_s}b_i)/(p_1^{j_1}p_2^{j_2}...p_s^{j_s}b_1, p_1^{j_1}p_2^{j_2}...p_s^{j_s}b_j)$$

$$= (p_1^{i_1}p_2^{i_2}...p_s^{i_s}b_i)/((p_1^{i_1}p_2^{i_2}...p_s^{i_s}, p_1^{j_1}p_2^{j_2}...p_s^{j_s})(b_i, b_j))$$

$$\geq b_i/(b_i, b_j)$$

for all i, j, it follows that $\max\{a_i/(a_i, a_j)\} \geq \max\{b_i/(b_i, b_j)\} \geq n$.

COROLLARY 2. Suppose that A contains a prime power p^d with the property: $a_i \neq p^k a_j$ for $i \neq j$ and $k \geq 0$. Then $\max\{a_i/(a_i, a_j)\} \geq n$.

Following corollary 2, we have

COROLLARY 3 ([5]). Let A be p-simple for a prime $p \neq 2$ and suppose that A contains a prime power $a_k = p^d$ ($d \geq 0$). Then $\max\{a_i/(a_i, a_j)\} \geq n$.

Received Ovtober 28,1994.
LEMMA 4 ([4]). If F is a finite collection of sets then the number of distinct differences of members of F is at least as large as the number of members of F.

THEOREM 5. Let $P(A) = \{p_1, p_2, \ldots, p_m\}$ and let $a_i = p_1^{i_1} p_2^{i_2} \cdots p_m^{i_m}$ for all a_i. If nonzero numbers of $\{1, 2, \ldots, n\}$ are equal for all p_j, then $\max_{i,j} \{a_i/(a_i, a_j)\} \geq n$.

Proof. Let $F_i = \{p \in P(A) : p | a_i\}, i = 1, 2, \ldots, n$. Then $a_i = a_j$ if and only if $F_i = F_j$ for all i, j. Clearly F_1, F_2, \ldots, F_n are n different sets. It follows from Lemma 4 that the number of different members of $\{F_i \setminus F_j : i, j = 1, 2, \ldots, n\}$ is at least as large as n. Since $F_i \setminus F_j = \{p \in P(A) : p | a_i/(a_i, a_j)\}$ and since $F_i \setminus F_j = F_h \setminus F_k$ if and only if $a_i/(a_i, a_j) = a_k/(a_k, a_k)$ for $1 \leq i, j, h, k \leq n$, it follows that $\{a_i/(a_i, a_j) : i, j = 1, 2, \ldots, n\}$ contains at least n different numbers. Thus, $\max_{i,j} \{a_i/(a_i, a_j)\} \geq n$.

COROLLARY 6 ([4]). If the members of A are squarefree integers then $\max_{i,j} \{a_i/(a_i, a_j)\} \geq n$.

THEOREM 7. If $[a_1, a_2, \ldots, a_n] \notin [1, 2, \ldots, n]$, then

$$\max_{i,j} \{a_i/(a_i, a_j)\} > n$$

where $[a_1, a_2, \ldots, a_n] = \text{lcm}\{a_1, a_2, \ldots, a_n\}$.

Proof. Suppose $[a_1, a_2, \ldots, a_n] \notin [1, 2, \ldots, n]$. Then there exists some a_k such that $a_k \notin [1, 2, \ldots, n]$. Let $P(A) = \{p_1, p_2, \ldots, p_m\}$ and $a_k = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$. Then there exists $p_s^{k_s}$ such that $p_s^{k_s} \notin [1, 2, \ldots, n]$. Hence $p_s^{k_s} > n$. Since $(a_1, a_2, \ldots, a_n) = 1$, we have $(p_s, a_t) = 1$ for some a_t, and hence $(p_s^{k_s}, a_t) = 1$. Thus $a_k/(a_k, a_t) \geq p_s^{k_s} > n$, and therefore, $\max_{i,j} \{a_i/(a_i, a_j)\} > n$.

References
On a conjecture of Graham

Institute of Mathematics
Huaibei Coal Mining Teachers College
Huaibei 235000, P. R. China

Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea