Fuzzy Pre-Irresolute Mappings

Jin Han Park and Bae Hun Park

1. Introduction and preliminaries

Weaker forms of fuzzy continuity have been considered by many authors [1, 2, 6, 8, 9] using the concepts fuzzy semiopen sets [1], fuzzy regularly open sets [1] and fuzzy preopen sets [2]. J. H. Park et al. [11] showed that fuzzy precontinuity and fuzzy almost continuity, due to Mukherjee and Sinha [8] is equivalent concepts.

In Section 2 of this paper we define and study fuzzy pre-irresolute mapping which is stronger than fuzzy precontinuous, and show that the concepts of fuzzy continuous and fuzzy pre-irresolute mappings are independent. In Section 3, we introduce and study concepts of fuzzy pre-separation axioms of fuzzy topological spaces.

Throughout this paper, by \((X, \tau)\) (or simply \(X\)) we mean a fuzzy topological space in Chang's [3] sense. A fuzzy point in \(X\) with support \(x \in X\) and value \(\alpha\) \((0 < \alpha \leq 1)\) is denoted by \(x_\alpha\). For a fuzzy set \(A\) in \(X\), \(\text{Cl}A\), \(\text{Int}A\), \(1 - A\) and \((A)_0\) will respectively denote the closure, interior, complement and support of \(A\), whereas the constant fuzzy sets taking on the values 0 and 1 on \(X\) are denoted by \(0_X\) and \(1_X\), respectively. A fuzzy set \(A\) of \(X\) is said to be q-coincident with a fuzzy set \(B\), denoted by \(AqB\), if there exists \(x \in X\) such that \(A(x) + B(x) > 1\) [7]. It is known [7] that \(A \leq B\) if and only if \(A\) and \(1 - B\) are not q-coincident, denoted by \(Aq(1 - B)\). For definitions and results not explained in this paper, the reader is referred to [1, 2, 7] in the assumption they are well known. The words 'neighborhood' and 'fuzzy topological space' will be abbreviated as 'nbd' and 'fts', respectively.

Definition 1.1 [1,2]. A fuzzy set \(A\) in \(X\) is said to be

(a) fuzzy semiopen (fuzzy semiclosed) if \(A \leq \text{ClInt}A\) (resp. \(\text{IntCl}A \leq A\)),

Received November 3, 1994
(b) fuzzy preopen (fuzzy preclosed) if \(A \leq \text{IntCl} A \) (resp. \(A \geq \text{ClInt} A \)).

Theorem 1.1 [2]. (a) An arbitrary union of fuzzy preopen sets is a fuzzy preopen set,

(b) any intersection of fuzzy preclosed sets is a fuzzy preclosed set.

Theorem 1.2 [2]. Let \(X \) and \(Y \) be fts's such that \(X \) is product related to \(Y \). Then the product \(U \times V \) of a fuzzy preopen set \(U \) in \(X \) and a fuzzy preopen set \(V \) in \(Y \) is a fuzzy preopen set in the fuzzy product spaces \(X \times Y \).

Definition 1.2 [11]. A fuzzy set \(A \) in a fts \(X \) is said to be fuzzy pre-q-nbd (fuzzy pre-nbd) of fuzzy point \(x_\alpha \) if there exists a fuzzy preopen set \(B \) such that \(x_\alpha B \leq A \) (resp. \(x_\alpha \in B \leq A \)).

Theorem 1.3 [11]. A fuzzy set \(A \) is a fuzzy preopen if and only if for each fuzzy point \(x_\alpha q A, A \) is a fuzzy pre-q-nbd of \(x_\alpha \).

Definition 1.3 [2]. Let \(A \) be any fuzzy set of a fts \(X \). Then fuzzy pre-closure (pCl) and pre-interior (pInt) of \(A \) are defined as follows:

\[
p\text{Cl} A = \bigwedge \{ B \mid B \text{ is fuzzy preclosed and } A \leq B \},
\]

\[
p\text{Int} A = \bigvee \{ B \mid B \text{ is fuzzy preopen and } B \leq A \}.
\]

Theorem 1.4 [11]. Let \(A \) be a fuzzy set in \(X \) and \(x_\alpha \) be a fuzzy point in \(X \). Then \(x_\alpha \in p\text{Cl} A \) if and only if for each fuzzy pre-q-nbd \(U \) of \(x_\alpha, U q A \).

Theorem 1.5. Let \(A \) be a fuzzy set in a fts \(X \). Then \(A \) is fuzzy semiopen set if and only if \(p\text{Cl} A = \text{ClInt} A \).

Proof. Let \(A \) be a fuzzy semiopen set in \(X \). Then \(p\text{Cl} A \) is fuzzy preclosed and so \(\text{ClInt} p\text{Cl} A \leq p\text{Cl} A \leq p\text{Cl} p\text{Cl} A \). Since \(A \) is fuzzy semiopen set, \(p\text{Cl} A \leq p\text{Cl} \text{ClInt} A = \text{ClInt} A \). Hence \(p\text{Cl} A = \text{ClInt} A \).

Conversely, let \(A \) be a fuzzy set with \(p\text{Cl} A = \text{ClInt} A \). Then \(A \leq p\text{Cl} A = \text{ClInt} A \) and hence \(A \) is fuzzy semiopen.
2. Fuzzy pre-irresolute mappings

Definition 2.1 [2]. A mapping \(f : X \rightarrow Y \) is said to be fuzzy precontinuous if \(f^{-1}(V) \) is a fuzzy preopen set for each fuzzy open set \(V \) in \(Y \).

Theorem 2.1. For a mapping \(f : X \rightarrow Y \) the following are equivalent:

(a) \(f \) is fuzzy precontinuous.
(b) \(\text{ClInt}f^{-1}(B) \leq f^{-1}(\text{Cl}B) \) for each fuzzy set \(B \) in \(Y \).
(c) \(f(\text{ClInt}A) \leq \text{Cl}f(A) \) for each fuzzy set \(A \) in \(X \).

Proof. (a)\(\Rightarrow \) (b): Let \(B \) be a fuzzy set in \(Y \). Then by Theorem 3.7 of [11], \(f^{-1}(\text{Cl}B) \) is fuzzy preclosed in \(X \). Since \(\text{ClInt}A \leq A \) for each fuzzy preclosed set \(A \) in \(X \), \(\text{ClInt}f^{-1}(B) \leq \text{ClInt}f^{-1}(\text{Cl}B) \leq f^{-1}(\text{Cl}B) \).

(b)\(\Rightarrow \) (c): Straightforward.

(c)\(\Rightarrow \) (a): Let \(V \) be a fuzzy closed set in \(Y \). By hypothesis, we have

\[
\text{Cl}f^{-1}(V) = f(\text{ClInt}f^{-1}(V)) \leq f^{-1}(\text{Cl}f^{-1}(V)) \leq \text{Cl}f^{-1}(V) = V,
\]

Then \(f^{-1}(V) \) is a fuzzy preclosed set and hence by Theorem 3.7 of [11], \(f \) is fuzzy precontinuous.

Definition 2.2. A mapping \(f : X \rightarrow Y \) is said to be fuzzy pre-irresolute if \(f^{-1}(V) \) is a fuzzy preopen set in \(X \) for each fuzzy preopen set \(V \) in \(Y \).

Clearly a fuzzy pre-irresolute mapping is fuzzy precontinuous, but the converse is not true by the following example.

Example 2.1. Let \(U_1 \), \(U_2 \), \(U_3 \) and \(U_4 \) be fuzzy sets in unit interval \(I \) defined as follows:

\[
U_1(x) = \begin{cases} 0 & 0 \leq x \leq \frac{1}{2} \\ 2x - 1 & \frac{1}{2} \leq x \leq 1 \end{cases}, \quad U_3(x) = \begin{cases} 0 & 0 \leq x \leq \frac{1}{4} \\ \frac{1}{3}(4x - 1) & \frac{1}{4} \leq x \leq 1 \end{cases}
\]
Consider fuzzy topologies \(\tau_1 = \{0_I, U_3, 1_I\} \) and \(\tau_2 = \{0_I, U_1, U_2, U_1 \cup U_2, 1_I\} \). Define \(f : (I, \tau_1) \to (I, \tau_2) \) by \(f(x) = \frac{1}{2}x \) for each \(x \in I \). Then \(f \) is a fuzzy precontinuous but not fuzzy pre-irresolute.

Theorem 2.2. For a mapping \(f : X \to Y \) the following are equivalent:

(a) \(f \) is fuzzy pre-irresolute.

(b) \(f^{-1}(B) \) is fuzzy preclosed in \(X \) for each fuzzy preclosed set \(B \) in \(Y \).

(c) \(pCl f^{-1}(B) \leq f^{-1}(pCl B) \) for each fuzzy set \(B \) in \(Y \).

(d) \(f(pCl A) \leq pCl f(A) \) for each fuzzy set \(A \) in \(X \).

(e) \(f^{-1}(pInt B) \leq pInt f^{-1}(B) \) for each fuzzy set \(B \) in \(Y \).

Proof. (a)\(\Leftrightarrow \) (b): Clear.

(b)\(\Rightarrow \) (c): Let \(B \) be a fuzzy set in \(Y \). By (b), \(f^{-1}(pCl B) \) is fuzzy preclosed and so \(pCl f^{-1}(B) \leq f^{-1}(pCl B) \).

(c)\(\Rightarrow \) (d) and (d)\(\Rightarrow \) (c) can be easily seen.

(c)\(\Rightarrow \) (e): Let \(B \) be any fuzzy set in \(Y \). By (c), we have

\[
1 - pInt f^{-1}(B) = pCl f^{-1}(1 - B) \leq f^{-1}(pCl(1 - B)) = 1 - f^{-1}(pInt B).
\]

Thus \(f^{-1}(pInt B) \leq pInt f^{-1}(B) \).

(e)\(\Rightarrow \) (a): Let \(B \) be any fuzzy pre-open set in \(Y \). Then \(B = pInt B \). By (e), we have \(f^{-1}(B) = f^{-1}(pInt B) \leq pInt f^{-1}(B) \). Then \(f^{-1}(B) \) is a fuzzy pre-open set and hence \(f \) is fuzzy pre-irresolute.

Theorem 2.3. A mapping \(f : X \to Y \) is fuzzy pre-irresolute if and only if for each fuzzy point \(x_\alpha \) in \(X \) and each fuzzy pre-nbd \(V \) of \(f(x_\alpha) \), there exists a fuzzy pre-nbd \(U \) of \(x_\alpha \) such that \(f(U) \subseteq V \).

Proof. The proof is easy and hence omitted.

Theorem 2.4. A mapping \(f : X \to Y \) is fuzzy pre-irresolute if and only if for each fuzzy point \(x_\alpha \) in \(X \) and each fuzzy pre-open pre-q-nbd
V of \(f(x_\alpha) \), there exists a fuzzy preopen pre-q-nbd \(U \) of \(x_\alpha \) such that \(f(U) \leq V \).

Proof. Let \(x_\alpha \) be a fuzzy point in \(X \) and \(V \) be a fuzzy preopen pre-q-nbd of \(f(x_\alpha) = f(x) \). Since \(V(f(x)) + \alpha > 1 \), there exists a positive real number \(\beta \) such that \(V(f(x)) > \beta > 1 - \alpha \), so that \(V \) is a fuzzy preopen pre-nbd of \(f(x) \). By Theorem 2.3, there exists a fuzzy preopen set \(U \) containing \(x_\beta \) such that \(f(U) \leq V \). Now, \(U(x) \geq \beta \) implies \(U(x) > 1 - \alpha \) and thus \(U \) is a fuzzy preopen pre-q-nbd of \(x_\alpha \).

Conversely, let \(V \) be a fuzzy preopen set and \(x_\alpha \in f^{-1}(V) \). Let \(m \) be a positive integer such that \(1/m \leq f^{-1}(V)(x) \). For any positive integer \(n \geq m \), we put \(\alpha_n = 1 + 1/n - f^{-1}(V)(x) \). Then \(0 < \alpha_n \leq 1 \) for all \(n \geq m \). Now, we have

\[
V(f(x)) + \alpha_n = V(f(x)) + 1 + \frac{1}{n} - f^{-1}(V)(x) = 1 + \frac{1}{n} > 1
\]

Thus \(V \) is a fuzzy preopen pre-q-nbd of \(f(x)\alpha_n \) for all \(n \geq m \). By hypothesis, there exists a fuzzy preopen set \(U_n \) in \(X \) such that \(x_\alpha \in U_n \) and \(f(U_n) \leq V \) for all \(n \geq m \). We put \(U = \bigvee_{n \geq m} U_n \). Then by Theorem 1.1, \(U \) is a fuzzy preopen set in \(X \) such that \(f(U) = \bigvee_{n \geq m} f(U_n) \leq V \).

Next we will show that \(x_\alpha \in U \). Since \(U_n(x) + \alpha_n > 1 \) for all \(n \geq m \), we have \(U(x) > f^{-1}(V)(x) - 1/n \) for all \(n \geq m \) which implies \(U(x) \geq f^{-1}(V)(x) \geq \alpha \). Thus \(x_\alpha \in U \).

Theorem 2.5. Let \(f : X \to Y \) one-to-one and onto. \(f \) is fuzzy pre-irresolute if and only if \(p\text{Int}f(A) \leq f(p\text{Int}A) \) for each fuzzy set \(A \) in \(X \).

Proof. Let \(A \) be any fuzzy set in \(X \). Then clearly \(f^{-1}(p\text{Int}f(A)) \) is a fuzzy preopen set. By Theorem 2.2, we have

\[
f^{-1}(p\text{Int}f(A)) \leq p\text{Int}f^{-1}(f(A)) = p\text{Int}A,
\]

\[
f(f^{-1}(p\text{Int}f(A))) \leq f(p\text{Int}A).
\]

Since \(f \) is onto, \(p\text{Int}f(A) = f(f^{-1}(p\text{Int}f(A))) \leq f(p\text{Int}A) \).

Conversely, let \(B \) be any fuzzy preopen set in \(Y \). Then \(B = p\text{Int}B \).

By hypothesis, \(f(p\text{Int}f^{-1}(B)) \geq p\text{Int}f(f^{-1}(B)) = p\text{Int}B = B \). This
implies that \(f^{-1}(f(pIntf^{-1}(B))) \geq f^{-1}(B) \). Since \(f \) is one-to-one, \(pIntf^{-1}(B) \geq f^{-1}(B) \). Hence \(f^{-1}(B) = pIntf^{-1}(B) \).

Theorem 2.6. Let \(X_1, X_2, Y_1 \) and \(Y_2 \) be sets such that \(X_1 \) is product related to \(X_2 \), and \(f_1 : X_1 \rightarrow Y_1, f_2 : X_2 \rightarrow Y_2 \) be mappings. If \(f_1 \) and \(f_2 \) are fuzzy pre-irresolute, then so is \(f_1 \times f_2 \).

Proof. Let \(V = \bigvee_{i,j}(G_i \times H_j) \), where \(G_i \)'s and \(H_j \)'s are fuzzy pre-open sets in \(Y_1 \) and \(Y_2 \) respectively, be a fuzzy preopen set in \(Y_1 \times Y_2 \). Using Lemmas 2.1 and 2.3 of [1], we have

\[
(f_1 \times f_2)^{-1}(V) = \bigvee_{i,j}(f_1 \times f_2)^{-1}(G_i \times H_j) = \bigvee_{i,j}[f_1^{-1}(G_i) \times f_2^{-1}(H_j)].
\]

Since \(f_1 \) and \(f_2 \) are fuzzy pre-irresolute, \(f_1^{-1}(G_i) \) and \(f_2^{-1}(H_j) \) are fuzzy preopen sets, and because of Theorems 1.1 and 1.2, it follows that \((f_1 \times f_2)^{-1}(V) \) is a fuzzy preopen set, which implies that \(f_1 \times f_2 \) is fuzzy pre-irresolute.

Theorem 2.7. Let \(f : X \rightarrow Y \) be a mapping and \(g : X \rightarrow X \times Y \) be the graph of \(f \). If \(g \) is fuzzy pre-irresolute, then \(f \) is fuzzy pre-irresolute.

Proof. It follows from Lemma 2.4 of [1].

Theorem 2.8. Let \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) be mappings.

(a) If \(f \) and \(g \) are fuzzy pre-irresolute, then \(g \circ f \) is fuzzy pre-irresolute.

(b) If \(f \) is fuzzy pre-irresolute and \(g \) is fuzzy precontinuous, then \(g \circ f \) is fuzzy precontinuous.

Proof. Straightforward.

The following Example 2.2 shows that fuzzy continuous and fuzzy pre-irresolute mappings are independent.

Example 2.2. Let \(U_1, U_2 \) and \(U_3 \) be fuzzy sets in \(X = \{a, b, c\} \) defined as follows:

\[
U_1(a) = 0.4, \quad U_1(b) = 0, \quad U_1(c) = 0;
U_2(a) = 0, \quad U_2(b) = 0.4, \quad U_2(c) = 0;
U_3(a) = 0.4, \quad U_3(b) = 0.4, \quad U_3(c) = 0.
\]
Consider the fuzzy topologies \(\tau_1 = \{0_X, 1_X, U_1, U_2, U_1 \lor U_2\} \) and \(\tau_2 = \{0_X, 1_X, U_1, U_3\} \).

(a) If a mapping \(f : (X, \tau_2) \to (X, \tau_1) \) defined by \(f(a) = b, f(b) = a, f(c) = c, \) then \(f \) is fuzzy continuous but not fuzzy pre-irresolute.

(b) If a mapping \(f : (X, \tau_1) \to (X, \tau_2) \) defined by \(f(a) = b, f(b) = a, f(c) = c, \) then \(f \) is fuzzy pre-irresolute but not fuzzy continuous.

Theorem 2.9. If \(f : X \to Y \) is fuzzy precontinuous and fuzzy open, then \(f \) is fuzzy pre-irresolute.

Proof. It follows from Theorem 4.3 of [12].

3. Separation axioms

Definition 3.1. A fts \(X \) is said to be fuzzy pre-\(T_0 \) if for every distinct two fuzzy points \(x_\alpha \) and \(y_\beta \), the following conditions are satisfied:

(a) When \(x \neq y \), either \(x_\alpha \) has a fuzzy pre-nbd which is not q-coincident with \(y_\beta \), or \(y_\beta \) has a fuzzy pre-nbd which is not q-coincident with \(x_\alpha \).

(b) When \(x = y \) and \(\alpha < \beta \) (say), there is a fuzzy pre-q-nbd of \(y_\beta \) which is not q-coincident with \(x_\alpha \).

Definition 3.2. A fts \(X \) is said to be fuzzy pre-\(T_1 \) if for every distinct two fuzzy points \(x_\alpha \) and \(y_\beta \), the following conditions are satisfied:

(a) When \(x \neq y \), \(x_\alpha \) has a fuzzy pre-nbd \(U \) and \(y_\beta \) has a fuzzy pre-nbd \(V \) such that \(x_\alpha \overline{q} V \) and \(y_\beta \overline{q} U \).

(b) When \(x = y \) and \(\alpha < \beta \) (say), then there exists a fuzzy pre-q-nbd \(V \) of \(y_\beta \) such that \(x_\alpha \overline{q} V \).

Definition 3.3. A fts \(X \) is said to be fuzzy pre-\(T_2 \) if for every distinct two fuzzy points \(x_\alpha \) and \(y_\beta \), the following conditions are satisfied:

(a) When \(x \neq y \), \(x_\alpha \) and \(y_\beta \) have fuzzy pre-nbds which are not q-coincident.

(b) When \(x = y \) and \(\alpha < \beta \) (say), then \(x_\alpha \) has a fuzzy pre-nbd \(U \) and \(y_\beta \) has a fuzzy pre-q-nbd \(V \) such that \(U \overline{q} V \).

Obviously, fuzzy pre-\(T_2 \) \(\Rightarrow \) fuzzy pre-\(T_1 \) \(\Rightarrow \) fuzzy pre-\(T_0 \). Also, fuzzy \(T_1 \) axiom [6] \(\Rightarrow \) fuzzy pre-\(T_i \) axiom, for \(i = 0, 1, 2 \).
THEOREM 3.1. A fts X is fuzzy pre-T_0 if and only if for every pair of distinct x_α and y_β, either $x_\alpha \notin p\text{Cl}(y_\beta)$ or $y_\beta \notin p\text{Cl}(x_\alpha)$.

Proof. The proof is easy and hence omitted.

THEOREM 3.2. A fts X is fuzzy pre-T_1 if and only if for every fuzzy point x_α is fuzzy preclosed in X.

Proof. The proof is easy and hence omitted.

THEOREM 3.3. A fts X is fuzzy pre-T_2 if and only if for every fuzzy point x_α in X, $x_\alpha = \bigwedge\{p\text{Cl}V \mid V$ is fuzzy pre-nbd of $x_\alpha\}$ and for every $x, y \in X$ with $x \neq y$, there is a fuzzy pre-nbd U of x_1 such that $y \notin (p\text{Cl}U)_0$, where $(p\text{Cl}U)_0$ is support of $p\text{Cl}U$.

Proof. Let x_α and y_β be fuzzy points in X such that $y_\beta \notin \{x_\alpha\}$. If $x \neq y$, then there are fuzzy preopen sets U and V containing y_1 and x_α respectively such that $U \q V$. Then V is a fuzzy pre-nbd of x_α and U is a fuzzy pre-q-nbd of y_β such that $U \q V$. Hence $y_\beta \notin p\text{Cl}V$. If $x = y$, then $\alpha < \beta$, and hence there are a fuzzy pre-q-nbd U of y_β and a fuzzy pre-nbd V of x_α such that $U \q V$. Hence $y_\beta \notin p\text{Cl}V$.

Finally, for distinct two point x, y of X, since X is fuzzy pre-T_2, there exist fuzzy preopen sets U and V such that $x_1 \in U$, $y_1 \in V$ and $U \q V$. Since $1 - V$ is fuzzy preclosed set containing U, $p\text{Cl}U \leq 1 - V$. Hence $y \notin (p\text{Cl}U)_0$.

Conversely, let x_α and y_β be distinct fuzzy points in X.

When $x
eq y$, we first suppose that at least one of α and β is less than 1, say $0 < \alpha < 1$. Then there exists a positive real number λ with $0 < \alpha + \lambda < 1$. By hypothesis, there exists a fuzzy pre-nbd U of y_β such that $x_\alpha \notin p\text{Cl}U$. Then there exists a fuzzy pre-q-nbd V of x_α such that $V \q U$. Since $\alpha < 1 - \lambda < V(x)$, V is fuzzy pre-nbd of x_α such that $U \q V$.

Next if $\alpha = \beta = 1$, by hypothesis there exists a fuzzy pre-nbd U of x_1 such that $p\text{Cl}U(y) = 0$. Then $V = 1 - p\text{Cl}U$ is a fuzzy pre-nbd of y_1 such that $U \q V$.

When $x = y$ and $\alpha < \beta$ (say), then there exists a fuzzy pre-nbd U of x_α such that $y_\beta \notin p\text{Cl}U$. Hence there exists a fuzzy pre-q-nbd V of y_β such that $U \q V$. Therefore, X is fuzzy pre-T_2.
THEOREM 3.4. Let $f : X \to Y$ be one-to-one mapping.

(a) If f is fuzzy precontinuous and Y is fuzzy T_i, then X is fuzzy pre-T_i for $i = 0, 1, 2$.

(b) If f is fuzzy pre-irresolute and Y is fuzzy pre-T_i, then X is fuzzy pre-T_i for $i = 0, 1, 2$.

Proof. We give a proof for $i = 1$ only; the other cases being similar, are omitted. Let x_α and y_β be distinct two fuzzy points in X.

When $x \neq y$, we have $f(x) \neq f(y)$, and by the fuzzy T_1 property of Y, there exist fuzzy nbds U and V of $f(x)_\alpha$ and $f(y)_\beta$ respectively such that $f(x)_\alpha qV$ and $f(y)_\beta qU$. Since f is fuzzy precontinuous, $f^{-1}(U)$ and $f^{-1}(V)$ are fuzzy pre-nbds of x_α and y_β respectively such that $y_\beta qf^{-1}(U)$ and $x_\alpha qf^{-1}(V)$.

When $x = y$ and $\alpha < \beta$ (say), then $f(x) = f(y)$. Since Y is fuzzy T_1, there exists a fuzzy q-nbd V of $f(y)_\beta$ such that $f(x)_\alpha qV$. Then $f^{-1}(V)$ is fuzzy pre-q-nbd of y_β such that $x_\alpha qf^{-1}(V)$. Hence X is fuzzy pre-T_1.

(b): The proof is similar to (a).

References

Department of Natural Sciences,
Pusan National University of Technology,
Pusan, 608–739, Korea

Department of Mathematics Education,
Korea National University of Education, Choongpook, 363–791, Korea.