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OPERATIONS ON THE SET OF NATURAL 

NUMBERS BY THE RECURSION THEOREM

Won Huh

1. Introduction The purpose of this note is to explore the operations of 
addition and multiplication of the set 3 of natural numbers as applications 
of the recursion theorem.

2. Preliminaries and Notations We shall assume the Bernays-Godel 
-von Neumann axiomatics for Set Theory.

Since the existence of a successor set is assumed, a natural number is, by 
definition, an element of the minimal successor set 3. The immediate suc­
cessor of an element n of u? is denoted by the symbol and the immediate 
predecessor of a non-zero element n of u; is denoted by n~.

THEOREM 2.1 Let Rn+ be a mapping of a set E into E for each n G 
Then for each e E E, there exists one and only one mapping

Fe : 3 ——> E

such that

(1) J^(0) = e, and
(2) 此(n+) = J?n+(J^(n)) for each n C 3.

Proof. Let >1 = {G C u? x .E | (0, e) G G A ((n, x) E G ——> (n+, Kn+(a^)) € 
GVn G s}； then since 3 x E is in 4 乂 尹 0. Since (0, e) € 시 for each 심 C 
(0, e) E and since for each G E A and each (n, x) C 3 '乂 玖(n,x) € G 
implies (n+, J?n+(x)) 6 G, we obtain that for each (n, w) G bxE, (n, x) E QA 
implies (n+, €「14 and hence, OA E A. We claim that

Fe ~: 3 —> E

with satisfying

(0, e) € A 现("))G for each n G cu.
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It is easy to see that Fe = D^4 C G for each G E A. We now proceed the 
proof of our claim in steps. .

(i) We are going to show that dom(Fe) = 3 by induction. Since (0, e) G Fey
0 E dom(Fe). Let n G then we can find an x E E such that
(n,x) G Fe, so that (n+,7?n+(x)) G and hence n+ E dom(Fe)y showing 
that dom(Fe) = 3.

(ii) We are going to show that 此 is a function. To this end, let

S = {n e IV \ (n,x) e Fe /\ (n.y) e Fe —一> x = y}.

We wish to show that S = tu. To show 0 € S, we argue by contradiction: 
Assume 0 @ S'; then there would be d E E such that (0, J) E Fe with 
e 尹 d; in this case, G = Fe \ ((0, J)} would be in A; indeed, (0, e) € G and 
if (n, x) € G then (n,x) E Fey so that (n+, J?n+(x))丰(0, d) for each n G u;5 
that is, (n,z) E G implies (n+,7?n+(x)) E G for each n C 3, and hence 
Fe C G, contradicting G C Fe /\ Fe Gy establishing 0 G S. We wish to 
show that n E S implies G S. To this end, assume there were an m C 3 
such that n € 5* A n+ S; by noting that letting N = co \ {0},

{n G TV |Vx G EWg € E : (n~, x) E Fe ——>

((n,/?n(a:)) e Fe e Fe 一> Rn(x) = y))

is a subset of S> there would be an n 6 S, an z G E)and a, y E E such that

(^,x) E Fe (n+, J?n+(z)) £ 凡人(n+,?/) 6 2^ A 7?n+(r)产 y.

Let G = Fe \ {(n+,y)); then since (0, e)丰("建/), we have (0, e) € G. Let 
(如£) € G; then (k「t) E Fei and hence (시死+(¥)) € Fe. In this case, we 
wish to show that (n+,y)丰To this purpose, assume (n+,?/)= 
(比及+0))； then we would have n+ = A y = R^(t\ so that A: = n, and 
hence, (n,x) C 码 /\ (知 t) = (n,f), so t = x because n € S, and we would 
have y = /?n+(x), contradicting y 尹 7?n+(x), showing that (fc,i) € G implies 

so that G E A and Fe C contradicting G C Fc/\Fe + G.
Thus, we have seen that the assumption that there is an n 6 u; such that 
n E SAn+ g S is false, establishing that S = 3. Since for each (n,硏 £ 3xE) 
(n,x) E Fe implies (n+,l?n+(z)) € Fei we have R("z+) = Rn+(Fe(n)) for 
each n G cj. Thus we have proved that Fe = C\A is a mapping of 3 into 
E such that (1) 兀(0) = e, and (2) = Rn+(凡(끼) for each n G u;.
(iii) It remains to prove that there is at most one such mapping Fe. To this 
end, assume there were two distinct such mappings Fe and F*; then the호。
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vould be an m G cu \ {0} such that 矶(m) + F*(m). Letting S = {m E 
u I Fe(m) 尹 there would be a first member k냐扌 0) of S such that
Fe(k)丰 F*(幻 and Fe(k~) = F*(A;~), since Rk(Fe(k~)) = -Rfc(F*(^-)), we 
Arould have Fe(k) = F*(fc), contradicting Fe(k) + F*(fc). Thus, we have 
:ompleted our proof. □

If Rn-)f — f for each n G u? we have the following Recursion theorem

Theorem 2.2. Let f be a mapping of a set E into itself, then for each 
e E E, there exists one and only one mapping

Fe : 3 ——> E

such that
(1) Fe(0) = e, and
(2) Fe(n+) = /(i^(n)) for each n E 3.

For the sake of later use, we discuss the following

THEOREM 2.3. Let a be any fixed member of a set E and let a mapping 
f : E x 3 ——> E be given. Then for each m E(V, there exists one and only 
one mapping

Fm : 3 ----E

such that
(1) En(0) = a, and
(2) = /(^n(n),m) for each n € u;.

Proof. Let

A= {G Cx E |(0,a) € G A V(n, a:) E aj x : (n,x) G G

一> (n+,/(x,m)) e G};

then since 3 x E £ 4and since (0, q) £ G for each G £ 4 (0,a) G 
ClA. Since for each G E A and each (n,x) £ 3 X 玖(n,a；) € G implies 
(n+,/(x,m)) 6 G, we obtain, for each (n,x) C 3 x 玖(n,x) 6 C\A implies 
(n+, €「14 so that C\A € A. It is easy to see that fa each G € 4
(~}A C G. We claim that Fm : 3 ——> 玖 and satisfies
(1) EJO) = % and
(2) = f(Fm(n)^ m) for each n E co.

We now proceed the proof of our claim in steps, (i) We are going to 
show that dom(Fm) = 3 by induction. Since (0,a) is a member of Fmj 
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0 G dom(Fm). Let n E dom(Fm)] then there exists sen. x E E such that 
(n, x) € Fmj and hence, (n+,/(x, m)) € F” so that n+ € dom(Fm)^ showing 
that dorn^Fm) = 3.
(ii) We are going to show that Fm is a function. That is, it is enough to 
show that for each n € u; aiid each pair of members x and y of E)(n, x) E 
Fm A (n, y) E Fm implies x = y. To this end, let S = {n G u; j Vx G 
E\/y E E : (n^x) E Fm A (n,y) G Fm ——> x = y}. We wish to 아low 
that S = 3. Assume 0 £ S; then there would be an x of £? such that 
(0,x) G Fm A a ^4 x. Consider G = Fm \ {(0并：)}； then (0,a) £ G, and 
if (n,/) E G then (n+,/(f,m)) G Fmy and (0,3：) 尹 (n+,/(t,m))5 아lowing 
that (n+,f(t,m)) G G whenever (n,t) 6 G> and hence, G E “4,so Fm C G, 
contradicting G C Fm A Fm 丰 G. Hence, 바le assumption 0 £ S is false, 
therfbre, we have 0 C S. We wish to show that for each n En E S implies 
" E S. We argue by contradiction. Assume there were an n G u? such that 
n G S A n+ S, by noting that letting N = 3、{0}

{n G TV I Var G ENy € E :(n-,x) G A (n, f(x, m)) e Fm

A(n,y) e Fm 一> f(x,m) = y}

is a subset of S, there would be an n G S, such that

(儿①)C En A (n+, /(x, m)) £ F" (n+, y) e Fm A y 7^ /(x, m).

Let G = Fm \ {(n+,y)};then (0,a) € G, and if (fc,Z) £ G then E F” so 
that ($*”(" m)) E Fm. We wish to show that /(t, m)) + (n+, y). To 
this purpose, assume /(/, m)) = (n+, y); then &+ = n+ A /(/, m)= 饥 
so that k = n R — y, and hence, (fc,i) = (n,f), since E Fmj 
we have x — t because n 6 *9, so that = /(x,m) = y. contradicting
/(x,m) 丰 y. Thus, we conclude that 仏m)) 寸二 (n+,y), 아lowing that
(k)t) € G implies (A:+,/(f,m)) € G so that G € 人 and hence, Fm C G, 
contradicting G C Fm 卜、G 丰 Fmy showing that 난2 assumption that there 
exists an n € u? such that n € S A n+ S, is false. From which it follows 
that S =必 showing that Fm is a function. Since for each (n,x) £ 3 x 玖 
(n,x) € Fm implies (n+./(x,m)) E F” we have Fm(n+) = /(J^n(n), m) for 
each n E 3.
(iii) It remains to prove that there is at most one such mapping Fm. To 
this purpose, assume there were two distinct such mappings Fm and Gm; 
then there would be a non-zero n of u; such that Fm(n)丰 Gm(n). Letting 
W = {n E u; \ 7^n(n) + Gm(n)}, IF C u；, and there would be a first member 
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k냐^ 0) of W such that Fm(k) 구£ Gm(k) and Fm侦厂) = 시m(人厂))from which 
it follows that Fm(k) =

),m) = Gm(k\ contradicting the choice of k. Thus, the assumption that 
there are two distinct such mapping is false. □

By an evaluation of we mean a mapping

(/> : y X 3 --- > 3

such that Mf，n) = f(n) for each f : 3 ——> u) and each n € 3.
3・ Addition Since f xlo defined by

(m,n) E f if and only if n — m+

is a mapping of 3 into itself. By the recursion theorem, for each m C 糾 
there exists a tmit-pae mapping

Sm : 3 ----> 3

such that

(1) Sm(0) = m, and
(2) Sm(") = 了(Sm(n)) = (Sm(n))+ for each n G u;.

Let A = {S" I m £ u?), let ©A be a restriction of the evaluation 
§ of to x cj, let k : 3 ——> A be defined by = Sm for each 
m G 3)and let 1 : u;——> u; be the identity mapping; then we obtain 
a mapping diagram

kxl
3X3 -------- > v4 X U； -------- > 3

such that

。(" X l)(m, 7Z)—饱4(Sm，Z)= $m(n)

for each n g
Letting

(/>A ° (k x 1) = a,

we have the following addition operation on u?
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THEOREM 3.1. There exists a unique mapping called the ad­
dition

Of ： td X IV ----> 3

such that
(1) a(m, 0) = m for each m € and
(2) a(m, n+) = (a(m, n))+ for each m and each n of 3.

As an immediate consequence, we have the following 

Corollary.
(1) For each m G u>, a(0, m) = m.
(2) For each pair of m and n of 3, a(m+,n) = (o：(m)n))+.

Theorem 3.2. The addition a on a; is associative^ that is, for all 
members I, m, and n of to,

a(a(/,m),n) = a(Z,a(m,n)).

Proof, The proof goes by the mathematical induction on n. Let

S = {n £ 3 I、〃 £ uNm £ 3 : m), n) = a(" a(m, n));

난}S C 3、Since a(a(I,m), 0) = = a(Z, a(m,0)), we have
0 C S. Let n G S;then for each Z G u; and each m G

a(a(Z,m),n) = a(Z,

and hence,

a(a(Z, m), n+) = (a(a(Z, m), n))+ = (a(Z, a(m, n)))+

=a(Z, (a(m, n))+) = a(Z, a(m, n+)),

showing that n E S implies n+ € S. Thus, we have proved that for 
all members Z, m, and n of cu, = a(Z,a(m,n)). □

4. Multiplication Since the addition a; on u? is defined as a 
mapping

a ： 3 X 3 ——> 3、

due to Theorem 2.3, for each m 6 cu, there exists a unique mapping

Fm : 3 一> 3

such that
(1) -Fk(O) = 0, and
(2) J^n(n+) = a(7^n(n),m) for each n € cu.
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Letting A — {Fm | m G 3}, letting 包4 be a restriction of the 
evaluation § °f 3* to 丿4 x 3)letting k : g ——> A be defined by 
k(m) = Fm for each m G u;, and letting 1 : 3 ——> 3 be the identity 
mapping, we have a following mapping diagram such that

kxl 如A
3X3 -------> /4 X 3 ------ > 3

satisfying o (fc x l)(m,n) = = Fm(n) for each pair of
m and n of u?.

Putting 饱4 o (A: x 1) = //, we have the following multiplication, 
operation on cj,

THEOREM 4.1. There exists a unique multiplication operation

“ ：3 X 3

STich-thst
(1) /z(m, 0) = 0 for each m £
(2) for each m E u? and each n £ 3,

/z(m, n+) = n),m).

As an immediate consequence, we have the following

Corollary. 1. For each 汙 £ 3,

«(0, n) = 0.

2. For each n € tu,
/z(l, n)二二 n.

For the sake of convenience, we make the usual notation:

Definition 1. For each n g

is denoted as
n + 1,

that is,
n + 1 = n*.
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2. For each pair of m and n of 3、

a(m,n)

is denoted as
m + n,

that is,
m + n = a(m, n).

3. For each pair of m and n of u?,

//(m, n)

is denoted as 
m - n or mn, 

that is.

m • n = n) or mn = /z(m, n).

THEOREM 4.2. The multiplication operation on is associative, 
that is, for all l9m, and n of u?,

(lm)n = Z(mn).

Proof. The proof goes by the mathematical induction on n. Let

5 = {n € u; I VZ € u;Vm € 化)：(Zm)n = Z(mn));

then S U 3 and 0 C S・ Suppose that n G S; 난2口 (Zm)n = Z(mn), 
and hence,

(Zm)(n + 1) = (Zm)n + (Zm)

=Z(mn) + (Zm)

=Z((mn) + m)

=Z(m(n + 1)),

so that (n + 1) € 5, establishing S = 0 □

Now, we study the distributivity of multiplication over addition.
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THEOREM 4.3. Fbr all members I, m, and n of 3〉

l(m + 72) = (Zm) + (Zn)

Proof. The proof goes by the mathematical induction on n. Let

S = (n € u; I VZ £ € 3 : l(m + n) — (Im) + (Z?2));

then S U 糾 and since l(m 4- 0) = Zm and (Im) + (10) = Zm, 0 £ S. 
Suppose that n E S; then for each I and each m of u?, Z(m + n)= 
(Im) + (Zn), and hence, for each I and each m of u?,

+ (n + 1)) = /((m + n) + 1)

=l(m + n) + I

=((Im) + (£))+ I

=(所 2) + ((/n) + I)

=(/m) + (Z(n + 1)),

so that (n + 1) 6 S, establishing S = 3. □
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