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OPERATIONS ON THE SET OF NATURAL
NUMBERS BY THE RECURSION THEOREM

Won Huy

1. Introduction The purpose of this note is to explore the operations of
addition and multiplication of the set w of natural numbers as applications
of the recursion theorem.

2. Preliminaries and Notations We shall assume the Bernays-Godel
-von Neumann axiomatics for Set Theory.

Since the existence of a successor set is assumed, a natural number is, by
definition, an element of the minimal successor set w. The immediate suc-
cessor of an element n of w is denoted by the symbol nt, and the immediate
predecessor of a non-zero element n of w 1s denoted by n™.

THEOREM 2.1 Let R,+ be a mapping of a set F into E for each n € w.
Then for each e € E, there exists one and only one mapping

F.:w— F

such that

(1) Fe(0) =e, and
(2) Fo(n?) = R,+(F.(n)) for each n € w.

Proof. Let A= {GCwxE|(0,e)e GA((n.2) € G — (nT, R +(2)) €
GVYn € w}; then since w X Eisin A, A # 0. Since (0,¢) € G for each G € A,
(0,¢) € NA, and since for each G € A and each (n,z) € w X E, (n,2) € G
implies (n7, R,+{z)) € G, we obtain that for each (n,z) € wx E, (n,z) € NA
implies (n*, R, +(x)) € NA, and hence, NA € A. We claim that

F.=nA:w— F
with satisfying

(0,e) € F. A{Fu(n),F.(n*)) € R+ for each n € w.
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It is easy to see that ¥, = NA C G for each G € A. We now proceed the
proof of our claim in steps. .

(1) We are going to show that dom(F,) = w by induction. Since (0,¢) € F,
0 € dom(F,). Let n € dom(F,); then we can find an ¢ € E such that
(n,z) € Fe, so that (n*, R,+(z)) € F., and hence nt € dom(F,), showing
that dom(Fe) = w.

(i1) We are going to show that F, is a function. To this end, let

S={n€w|(nz)€F.A(n,y) € F. — z =y}

We wish to show that § = w. To show 0 € S, we argue by contradiction:
Assume 0 ¢ S; then there would be a d € E such that (0,d) € F, with
e # d; in this case, G = F, \ {{0,d)} would be in A; indeed, (0,e) € G and
if (n,z) € G then (n,z) € F, so that (nt, R,+(z)) # (0,d) for each n € w,
that is, (n,z) € G implies (n*, R +(2)) € G for each n € w, and hence
F. C G, contradicting G C F, A F, # G, establishing 0 € §. We wish to
show that n € § implies nt € S. To this end, assume there were an n € w
such that n € S Ant ¢ S; by noting that letting N = w \ {0},

{neNNzeEVyeE:(n",z)€ F, —
((n, Ry(z)) € Fe A(n,y) € Fe — Ru(z) = y)}

is a subset of S, there would be an n € §, an z € E, and a y € E such that
(n,2) € Fe A (n+,Rn+(x)) € Fe A (‘n+,y) € Fe A Rp+(2) # .

Let G = F, \ {(n*,y)}; then since (0,¢) # (n*,y), we have (0,¢e) € G. Let
(k,t) € G then (k,t) € F,, and hence (k*, Ri4(t)) € F,. In this case, we
wish to show that (nt,y) # (k*, By+(t)). To this purpose, assume (n¥,y) =
(k*, Ri+(1)); then we would have nt = k+ Ay = R+ (¢), so that k = n, and
hence, (n,z) € F, A{(k,t) = (n,t), so t = = because n € S, and we would
have y = R, +(z), contradicting y # R,+(z), showing that (k,t) € & implies
(Y, Ry+(t)) € G, sothat G € Aand F, C G, contradicting G C F.AF, # G.
Thus, we have seen that the assumption that there is an n € w such that
n € SAnt ¢ Sis false, establishing that § = w. Since for each (n, z) € wx E,
(n,z) € F, implies (n*, R, +(z)) € F., we have F(n) = R, +(F.(n)) for
each n € w. Thus we have proved that F, = NA is a mapping of w into
E such that (1) F.(0) = e, and (2) Fe(nt) = R,+(F.(n)) for each n € w.
(ii1) It remains to prove that there is at most one such mapping F,.. To this
end, assume there were two distinct such mappings F, and F™*; then there
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would be an m € w\ {0} such that F,(m) # F*(m). Letting § = {m €
v | Fo(m) # F*(m)}, there would be a first member k(# 0) of S such that
FL(k) # F*(k) and F (k™) = F*(k™), since Rp(F. (k™)) = Re(F*(k7)), we
would have F.(k) = F*(k), contradicting Fe(k) 5 F*(k). Thus, we have
:ompleted our proof. (]

If R+ = f for each n € w we have the following Recursion theorem

THEOREM 2.2. Let f be a mapping of a sct E into itself, then for each
e € E, there exists one and only one mapping

Foiw-—FE

such that
(1) F(0) =e, and
(2) F.(nt) = f(F.(n)) for each n € w.

For the sake of iater use, we discuss the following

THEOREM 2.3. Let a be any fixed member of a set E and let a mapping
f: Exw— E be given. Then for each m € w, there exists one and only
one mapping

Fo:w—F

such that
(1) Fr(0) =g, and
(2) Fp(nt)= f(Fn(n),m) for eachn € w.

Proof. Let

A={GCwx E|0,a) E GAV(n,z)Ewx E:(n,z)€EG
— (o, f(z,m)) € G};

then since w x E € A, A # @, and since (0,a) € G for each G € 4, (0,a) €
NA. Since for each G € A and each (n,z) € w x E, (n,2) € G implies
(n*, f(z,m)) € G, we obtain, for each (n,z) € w X E, (n,z) € NA implies
(n?, f(z,m)) € NA, so that NA € A. It is easy to see that for each G € A,
NA C G. We claim that Fy, : w — E, and satisfies
(1) F,,(0) = a, and
(2) Fn(n®) = f(Fn(n), m) for each n € w.

We now proceed the proof of our claim in steps. (i) We are going to
show that dom(F,,) = w by induction. Since (0,a) is a member of Fp,,
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0 € dom(F,,). Let n € dom(Fy,); then there exists an z € E such that
(n,z) € Fy, and hence, (nt, f(z,m)) € Fyn, so that nt € dom(Fy,), showing
that dom(Fy,) = w.

(i) We are going to show that F,, is a function. That is, it is enough to
show that for each n € w and each pair of members =z and y of E, (n,z) €
F, A(n,y) € F,, implies z = y. To thisend, let § = {n € w | Vz €
EVy € E : (n,z) € Fo A(n,y) € F — z = y}. We wish to show
that § = w. Assume 0 ¢ §; then there would be an z of E such that
(0,z) € Fy Aa # z. Consider G = Fy,, \ {(0,2)}; then (0,a) € G, and
if (n,t) € G then (nt, f(t,m)) € F,, and (0,2) # (n*, f(t,m)), showing
that (n™¥, f({,m)) € G whenever (n,t) € G, and hence, G € A,50 Fr, C G,
contradicting G C F, A Fn # G. Hence, the assumption 0 ¢ S is false,
therfore, we have 0 € S. We wish to show that for each n € w, n € § implies
nt € S. We argue by contradiction. Assume there were an n € w such that
n € SAnt ¢ S, by noting that letting N = w \ {0}

{neN|Vee EVye E:(n",z) € Fiu A(n, f(z,m)) € Fp,
A(n,y) € Fro — f(z,m) =y}

1s a subset of 5, there would be an n € § such that
(n,2) € Fn A(nT, f(2,m)) € Fou A (n¥,y) € Fru Ay # flz,m).

Let G = F,\ {{(n*,y)};then (0,a) € G, and if (k,t) € G then (k,t) € Fpp, s0
that (k*, f(¢,m)) € F,. We wish to show that (kt, f(t,m)) # (nt,y). To
this purpose, assume (k*, f(t,m)) = (nt,y); then k¥ = nt A f(t,m) = y,
so that k = n A f({,m) = y, and hence, (k,t) = (n,1), since (n,z) € Fp,
we have & = { because n € 5, so that f(t,m) = f(z,m) = y, contradicting
f(z,m} # y. Thus, we conclude that (kt, f(¢t,m)) # (n*,y), showing that
(k,t) € G implies (k*, f(t,m)) € G so that G € A, and hence, F,, C G,
contradicting G C Fy, A G # F,,, showing that the assumption that there
exists an n € w such that n € S An* ¢ S is false. From which it follows
that S = w, showing that Fy, is a function. Since for cach (n,z) € w x E,
(n,x) € Fy, implies (n*.f(z,m)) € Fyn, we have F(nt) = f(Fn(n), m) for
each n € w.

(ii1) It remains to prove that there is at most one such mapping Fy,. To
this purpose, assume there were two distinct such mappings Fy, and G,,;
then there would be a non-zero n of w such that F,(n) # Gm(n). Letting
W={necw|F.(n)# Gn(n)}, W C w, and there would be a first member
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k{(# 0) of W such that Fy,,(k) # Gp(k) and Fip(k™) = Gk ™), from which
it follows that Fi,(k) = f(Fn(k™),m) = f(G..(k™.

),m) = G(k), contradicting the choice of k. Thus, the assumption that
there are two distinct such mapping is false. O

By an evaluation of w“, we mean a mapping
WY Xw —w

such that ¢(f,n) = f(n) for each f : w — w and each n € w.
3. Addition Since f C w X w defined by

(m,n}e f ifandonlyif n=mt

is a mapping of w into itself. By the recursion theorem, for each m € w,
there exists 5 unique mapping

Smiw—w

such that
(1) Sm(0) =m, and
(2) Sm(n™) = f(Sm(n)) = (Sn(n))* for each n € w.
Let A = {5, | m € w}, let ¢4 be a restriction of the evaluation
¢ of w* to AX w, let k: w — A be defined by k(m) = S, for each
m € w, and let 1 : w — w be the identity mapping; then we obtain
a mapping diagram

kx1 P4
WXW — AXw — w

such that

da0 (k X 1)(m,n) = ¢A(Sm,n) = Sm(n)

for each n € w.
Letting

dao(k x1)=a,

we have the following addition operation on w
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THEOREM 3.1. There exists a unique mapping called the ad-
dition
O w X W —w

such that
(1) a(m,0) = m for each m € w, and
(2) a(m,n?) = (a(m,n))* for each m and each n of w.
As an immediate consequence, we have the following

COROLLARY.
(1) For eachm € w, a(0,m) =m.
(2) For each pair of m and n of w, a(m™*,n) = (a(m,n))*.

THEOREM 3.2. The addition « on w is associative, that is, for all
members I, m, and n of w,

a{a(l,m),n) = o(l, a{m,n)).

Proof. The proof goes by the mathematical induction on n. Let
S={necwl|Vlewymew:ala(l,m),n) = a(l,a(m,n));

then § C w. Since afa(l,m),0) = al,m) = afl,a(m,0)), we have
0€ S. Let n € S;then for each [ € w and each m € w,

ala(l,m),n) = a(l, a{m, n)),
and hence,
ao(a(l,m),n*) = (ala(l,m),n))* = (a(l,a(m,n)))*
= a(l,(a(m,n))") = a(l, a(m,n ™)),
showing that n € § implies n* € §. Thus, we have proved that for
all members I, m, and n of w, a(a(l,m),n) = a(l,a(m,n)). O

4. Multiplication Since the addition a on w is defined as a

mapping
0w X W — w,

due to Theorem 2.3, for each m € w, there exists a unique mapping
Fohbiw-—w

such that
(1) Frm(0) =0, and
(2) F(nt) = a(Fn(n),m) for each n € w.
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Letting 4 = {F,, | m € w}, letting ¢4 be a restriction of the
evaluation ¢ of w* to A X w, letting k£ : w — A be defined by
k(m) = Fp, for each m € w, and letting 1 : w — w be the identity
mapping, we have a following mapping diagram such that

kX1 A
WXW ————— AXw —— w

satisfying ¢4 o (k X 1)(m,n) = ¢ 4{Fm,n) = Fn(n) for each pair of
m and n of w.

Putting ¢4 o (k x 1) = g, we have the following multiplication
operation on w,

THEOREM 4.1. There exists a unique multiplication operation

,u:wa

)u'(mu n+) = a(p(m,n),m).

As an immediate consequence, we have the following

COROLLARY. 1. For eachn € w,
#(0, n) =0.
2. For eachn € w,
p#(1l,n) = n.
For the sake of convenience, we make the usual notation:

DEFINITION 1. For each n € w,

n+

is denoted as
n+1,

that is,
n+1l=nt.
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2. For each pair of m and n of w,
a(m, n)

13 denoted as
m+n,

that 1s,
m+n = a(m,n).

3. For each pair of m and n of w,
#(m,n)

1s denoted as
m-n or mn,

that is,

m-n=p(m,n) or mn = pu(m,n).

THEOREM 4.2. The multiplication operation on w is associative,
that is, for all I m, and n of w,

(Im)n = l(mn).

Proof. The proof goes by the mathematical induction on n. Let
S={newiVliewym €w: (Im)n =Ii(mn)},

then $ C w and 0 € S. Suppose that n € §; then (Im)n = {(mn),
and hence,

{(Im)(n + 1) = (Im)n + (Im)
= l{mn) + (Im)
=1((mn) + m)
= U(m(n + 1)),
so that (n + 1) € S, establishing S=w. 0O

Now, we study the distributivity of multiplication over addition.
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THEOREM 4.3. For all members |, m, and n of w,

m+n)=(Im)+ (In)

Proof. The proof goes by the mathematical induction on n. Let
S={necw|Vlicw¥m cw:l(m+n)={_Im)+(In)};

then § C w, and since {(m + 0) = Im and (Im) + (10} = im, 0 € S.
Suppose that n € S; then for each ! and each m of w, I{m + n) =
(Im) + (In), and hence, for each ! and each m of w,

{m+(n+1) =l{{m+n)+1)
=l{m+n)+1
=((Im)+(In))+ 1
={Im)+((In) +1)
= (Im) + (ln + 1)),

so that (n 4+ 1) € S, establishing § =w. O
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