WEAKLY COMPACT FUNCTIONS

V.P. SINGH, G.I. CHAE AND R. POONIWALA

1. Introduction

Throughout this note, spaces always mean topological spaces unless explicitly stated and we will denote a function f from a space X into Y by $f : X \to Y$, the graph of f by G_f, the closure of U by $cl(U)$ and the set V containing x by V_x. For definitions and terminologies not explained, we will refer to [1,3,6].

A function $f : X \to Y$ is said to be compact [7] if for each closed and compact set $K \subset Y, f^{-1}(K)$ is closed and compact in X; to be \mathcal{C}-continuous [3] if for each open set $V \subset Y$ having compact complement, $f^{-1}(V)$ is open in X; to have closed graph [5] (resp. strongly closed graph [6]) if for each pair $(x, y) \in X \times Y, y \neq f(x)$, there exist open sets U_x and V_y such that $f(U_x) \cap V_y = \emptyset$ (resp. $f(U_x) \cap cl(V_y) = \emptyset$).

In this note a new concept of a function called weakly compact is defined and investigate relationships between weakly compact functions, graph functions, known functions and the Co-compact space introduced in this note. We will know the fact (Confer to Theorem 2) that most (or more) of results in [3] will be obtained from weakly compactness.

2. W-compact functions and Co-compact spaces

DEFINITION 1. A function $f : X \to Y$ is said to be weakly compact (briefly W-compact) if for each closed and compact set K of $Y, f^{-1}(K)$ is closed in X.

Every continuous function is W-compact but its converse need not be true. For example, the identity $I : (R, \mathcal{U}) \to (R, \mathcal{D})$ is W-compact (even compact) but not continuous where \mathcal{U} and \mathcal{D} are respectively the usual and discrete spaces of real numbers. It is interesting to note that weakly compact functions are \mathcal{C}-continuous and vice-versa.

Received December 13, 1994
We thank Dr. D N Misra for his encouragements.
Theorem 2. \(f : X \rightarrow Y \) is W-compact if and only if \(f \) is C-continuous.

Proof. Let \(f \) be C-continuous and \(K \) a closed compact subset of \(Y \). Then \(Y \setminus K \) is open with compact complement. Thus \(f^{-1}(Y \setminus K) = X \setminus f^{-1}(K) \) is open, i.e., \(f^{-1}(K) \) is closed in \(X \) and hence \(f \) is W-compact. Conversely, let \(f \) be W-compact and \(V \) an open set of \(Y \) having compact complement. Then \(f^{-1}(Y \setminus V) = X \setminus f^{-1}(V) \) is closed, i.e., \(f^{-1}(V) \) is open. Thus \(f \) is C-continuous.

Theorem 3. If \(f : X \rightarrow Y \) has the closed graph, then \(f \) is W-compact.

The proof follows directly from [4, Proposition 9, p.200] stating that for any compact subset \(K \subset Y \), \(f^{-1}(K) \) is closed in \(X \) whenever \(f \) has its graph closed. However, the converse of Theorem 3 need not be true as shown by the below example.

Example 4. Let \(X \) be an infinite set with cofinite topology. Then the identity \(I \) on \(X \) is W-compact but its graph is not closed.

Theorem 5. Let \(X \) be regular and \(Y \) compact Hausdorff. If \(f : X \rightarrow Y \) is W-compact, then \(G_f \) is strongly closed and thus closed.

Proof. Let \((x,y) \notin G_f \). Then \(y \neq f(x) \). Since \(Y \) is Hausdorff, there are open sets \(O_y \) and \(W_{f(x)} \) such that \(O_y \cap W_{f(x)} = \emptyset \). Since \(Y \) is compact Hausdorff and \(y \in O_y \), there is an open set \(V_y \) such that \(y \in V_y \subset \text{cl}(V_y) \subset O_y \). Since \(cl(V_y) \) is closed compact (for \(Y \) is compact) and \(f \) is W-compact, \(f^{-1}(cl(V_y)) \) is a closed set of \(X \) not containing \(x \). By regularity of \(X \), there is an open set \(U_x \) such that \(f^{-1}(cl(V_y)) \cap cl(U_x) = \emptyset \). Hence we have \(f(U_x) \cap cl(V_y) = \emptyset \).

Theorem 6. Let \(X \) be regular and \(Y \) be \(T_1 \). If \(f : X \rightarrow Y \) is closed and W-compact, then \(f \) has closed graph.

Proof. For any pair \((x,y) \notin G_f \), i.e., \(x \notin f^{-1}(y) \), (or \(y \neq f(x) \)), \(f^{-1}(y) \) is a closed set not containing \(x \) since \(f \) is W-compact and \(Y \) is \(T_1 \). Since \(X \) is regular, there is an open sets \(U_x \) such that \(f^{-1}(y) \cap cl(U_x) = \emptyset \), i.e., \(f^{-1}(y) \subset X \setminus cl(U_x) \). Since \(f \) is closed, from [2, Theorem 11.2, p.86] there exists an open set \(V_y \) such that \(f^{-1}(y) \subset f^{-1}(V_y) \subset X \setminus cl(U_x) \). So \(V_y \cap f(U_x) = \emptyset \). So \(f \) has a closed graph.

Composition of W-compact functions need not be W-compact. Let \(X, Y \) and \(Z \) be cofinite, discrete and usual spaces of real numbers
respectively. Then \(I_1 \circ I_2 \) is not W-compact for identities \(I_1 : X \to Y \) and \(I_2 : Y \to Z \) even though \(I_1 \) and \(I_2 \) are W-compact. Relationships between W-compact functions and its graph functions are shown.

Theorem 7. If \(f : X \to Y \) is continuous and \(g : Y \to Z \) is W-compact, then \(g \circ f \) is W-compact.

The proof is obvious and is thus omitted. It is easy to prove that \(g \circ f \) is W-compact if \(Y \) is a compact space where \(f : X \to Y \) and \(g : Y \to Z \) are W-compact functions.

Theorem 8. Let \(f : X \to Y \) be W-compact. Then \(G_f : X \to X \times Y \) where \(G_f(x) = \{(x, f(x)) : x \in X\} \) is W-compact.

Proof. By Theorem 2, it suffices to show that for any open set \(U \times V \) in \(X \times Y \) having compact complement, \(G^{-1}(U \times V) \) is open in \(X \). Let \(K = X \times Y \setminus (U \times V) = K = (X \setminus U) \times Y \cup X \times (Y \setminus V) \). Since \(X \times (Y \setminus V) \) is compact for it is a closed subset of the compact set \(K \) and so \(P_Y(X \times (Y \setminus V)) = Y \setminus V \) is compact where \(P_Y \) is the projector on \(Y \). Since \(f \) is W-compact and hence \(f^{-1}(V) \) is open, \(G_f^{-1}(U \times V) = U \cap f^{-1}(V) \) is open in \(X \). Thus \(G_f \) is W-compact.

The converse of Theorem 8 need not be true. In the case that \(X \) is compact we have the following stronger result.

Theorem 9. Let \(X \) be a compact space. Then \(f : X \to Y \) is W-compact whenever \(G_f \) is W-compact.

Proof. Let \(V \) be an open set of \(Y \) having compact complement. Then it is enough to show that \(f^{-1}(V) \) is open in \(X \). Consider \(X \times Y \setminus (X \times V) = X \times (Y \setminus V) \) is compact, for \(X \) and \(Y \setminus V \) are compact. Since \(G_f \) is W-compact, \(G_f^{-1}(X \times V) = f^{-1}(V) \) is open in \(X \).

Theorem 10. Let \(X \) be normal and \(Y \) be \(T_1 \). If \(f : X \to Y \) is surjective and W-compact, then \(Y \) is \(T_2 \).

Proof. Let \(x, y \in X, x \neq y \). Then \(\{x\}, \{y\} \) are closed and compact subsets of \(Y \) and thus \(f^{-1}(x), f^{-1}(y) \) are closed in \(X \). By normality of \(X \) there are disjoint open sets \(U_1 \) and \(U_2 \). Since \(f \) is closed, from [2, Theorem 11.2, p. 86] there are \(V_x \) and \(V_y \) such that \(f^{-1}(x) \subset f^{-1}(V_x) \subset U_1 \) and \(f^{-1}(y) \subset f^{-1}(V_y) \subset U_2 \). Since \(U_1 \cap U_2 = \emptyset, f^{-1}(V_x \cap V_y) = \emptyset \). \(V_x \cap V_y = \emptyset \). \(Y \) is a \(T_2 \) space.
Definition 11. A space X is said to be Co-compact if for each $x \in X$ and each open set U_x (containing x), there exists an open set V_x such that $x \in V_x \subset U_x$ and $X \setminus V_x$ consists of finite number of closed compact subsets of X.

Example 12. Finite spaces, indiscrete spaces and an infinite space with cofinite topology are some of the examples of Co-compact spaces even though the usual space of real numbers is not Co-compact.

Theorem 13. If $f : X \to Y$ is W-compact and Y is a Co-compact space, then f is continuous.

Proof. Let $x \in X$, $y = f(x)$ and V be any open neighborhood of y. Since Y is Co-compact, there is an open set V_y such that $y \in V_y \subset V$ and $Y \setminus V_y$ consists of finite number of closed compact sets, say $C_1, C_2, C_3, \ldots, C_n$. Since each C_k is closed and compact, each $f^{-1}(C_k)$ is closed by W-compactness of f. Let $C = \bigcup_{k=1}^{n} f^{-1}(C_k)$. Then C is closed in X and $W = X \setminus C$ is an open set containing x such that $W = f^{-1}(Y) \setminus f^{-1}(\bigcup_{k=1}^{n} C_k) = f^{-1}(Y \setminus (Y \setminus V_y)) = f^{-1}(V_y) \subset f^{-1}(V)$. So $f(W) \subset V$. Hence f is continuous.

References

Department of Mathematics
Regional College of Ed.
Bhopal 462-013, India

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea