GROUP MEMBERS IN NEAR-RINGS

YOUNG-IN KWON

The elements of a near-ring together with the additive operation of the near-ring form a group. These elements together with the multiplicative operation of the near-ring, however, form a semigroup but may not form a group. It may occur that some subset G of a near-ring N under consideration does form a group under the multiplicative operation of the near-ring N. The set G is then a multiplicative group in the near-ring N. In this paper we consider only the multiplicative groups of a near-ring and never the additive groups. Thus we shall say G is a group in N, it being understood that the multiplicative operation of the near-ring N is the group operation of G. Accordingly, if a is an element of G and G is a group in a near-ring N, we shall say that a is a group member in N. In 1909, Arthur Ranum ([5]) introduced the notion of group membership and discussed it again in 1927 in [6]. The subject was also considered by H.K.Farahat and L.Mirsky ([3]) and W.E.Barnes and H.Schneider ([1]).

In this paper we obtained some properties of this notion.

Definition 1. A near-ring is a system consisting of a set N and two binary operations in N called addition and multiplication such that (1). N together with addition is a group (2). N together with multiplication is a semigroup (3). The left distributive law holds.

Definition 2. A set G is a group in a near-ring N if G is a subset of N and the elements of G form a group under the multiplicative operation of the near-ring N. If G is a group in a near-ring N and a is an element in G, then we say that a is a group member in N.

With these definitions we are now prepared to establish the first structure theorem for group membership in near-rings.

Received February 25, 1994.

This research was supported by Gyeongsang National University Research Fund.
Theorem 3. Let N be a near-ring and let a be a group member in N. Then there exists a group $M(a)$ in N such that every group in N containing a is a subgroup of $M(a)$. In particular, the identity element of any group containing a is the identity element of $M(a)$, and the inverse of a in any group to which it belongs is equal to its inverse in $M(a)$.

Proof. Let $\{G_i\}_{i \in I}$ be the family of all groups in N which contain a, where I is an appropriate index set. For every i in I, denote by e_i the identity element of G_i and by a_i^{-1} the inverse of a in G_i. Then we have, for $i,j \in I$, $a_i^{-1} = a_i^{-1}e_i = a_i^{-1}a_i^{-1}a = a_i^{-1}a_i^{-1}ae_i = a_i^{-1}a_i^{-1}aaa_j^{-1} = a_i^{-1}e_iaa_j^{-1} = a_i^{-1}e_iaa_j^{-1} = a_i^{-1}aa_j^{-1} = a_i^{-1}ae_ja_j^{-1} = a_i^{-1}aaa_j^{-1}a_j^{-1} = e_i aa_j^{-1}a_j^{-1} = e_i a_j^{-1} = a_j^{-1}$. Therefore $e_i = aa_i = aa_j = e_j$. Thus all groups $G_i, i \in I$, have a common identity element, say e, and a common inverse, say a^{-1}, relative to e, in every group G_i. Now let $M(a)$ be the set of all elements x in N which can be represented by the form $x = x_1 x_2 x_3 \ldots x_k$, where x_i belongs to some G_i. It can be verified at once that $M(a)$ is a group with $(x_k)^{-1} \ldots (x_1)^{-1}$ as the inverse of x and clearly $G_1, i \in I$, is a subgroup of $M(a)$.

Definition 4. The group $M(a)$ of the above Theorem 3 is said to be the maximal group associated with a. The inverse of an element a, if it exists, will be denoted by a^{-1}.

Theorem 5. If N is a near-ring and a, b are group members in N, then $M(a)$ and $M(b)$ are either disjoint or identical.

Proof. Let e be the identity of $M(a)$. It follows from the proof of Theorem 3 that $M(a) = M(e)$. Hence, if for some element c in N we have $c \in M(a)$ and $c \in M(b)$, then the identity of $M(b)$ is e. Thus we have $M(a) = M(e) = M(b)$.

Definition 6. Let a be an element in a near-ring N. If there exists a positive integer n such that a^n is a group member in N, then a is said to have finite group index in N. The smallest such n is called the group index of a in N.

A near-ring N is said to have finite group index if every element in N has finite group index. If the group index of an element a is 1, then a^1 is a group member. Then from the definition, we have
THEOREM 7. Let \(N \) be a near-ring and let \(a \) be an element in \(N \) with finite group index \(n \). Then \(a \) is a group member in \(N \) if and only if \(n = 1 \).

THEOREM 8. Let an element \(a \) in a near-ring \(N \) have a finite group index \(n \). Then \(a^t \) is a group member in \(N \) if and only if \(t \geq n \). Furthermore, if \(t = n \), then \(M(a^t) = M(a^n) \).

Proof. Let \(a^t \) be a group member in \(N \). By the definition of the group index, \(t \) cannot be less than \(n \). Hence we have \(t \geq n \). Conversely, let \(t \geq n \). If \(t = n \), then \(a^t = a^n \) and so \(a^t \) is a group member in \(N \) since \(a^n \) is a group member in \(N \). Now suppose \(t > n \). Denote the identity of \(M(a^n) \) by \(e \), and let \(b = a^{-1} \). Then \(e \) is a two-sided identity for \(a^t \), since \(a^t e = (a^t a^n) e = a^{t-n}(a^n e) = a^{t-n} a^n = a^t \), and \(ea^t = e(a^n a^{t-n}) = (ea^n)a^{t-n} = a^n a^{t-n} = a^t \). Next we show that \(a^t \) is invertible relative to \(e \). Let \(p \) be an integer such that \(pn > 2t \). Then \(a^t(a^{pn-t}b^p) = (a^t a^{pn-t})b^p = a^{pn}b^p = (a^nb)^p = e^p = e \) and so \(a^{pn-t}b^p \) is a right inverse for \(a^t \). Since \((b^n a^{pn-t})a^t = b^p(a^{pn-t}a^t) = b^p a^{pn} = (ba^n)^p = e^p = e \), we have also that \(b^p a^{pn-t} \) is a left inverse for \(a^t \). But \(e \) is a two-sided identity for \(a^{pn-t}b^p \), because \((a^{pn-t}b^p)e = (a^{pn-t}b^p-1)(be) = (a^{pn-t}b^p-1)b = a^{pn-t}b^p \) and \(e(a^{pn-t}b^p) = (ea^t)(a^{pn-2t}b^p) = a^t(a^{pn-2t}b^p) = a^{pn-t}b^p \). Similarly, we may show that \(e \) is a two-sided identity for \(b^p a^{pn-t} \). The uniqueness of the inverse of \(a^t \) follows from \(a^{pn-t}b^p = e(a^{pn-t}b^p)^t = e^p(a^{pn-t}b^p) = (ba^n)^p(a^{pn-t}b^p) = (b^p a^{pn-t})(a^{pn-t}b^p) = (b^p a^{pn-t})(a^{pn-t})e = b^p a^{pn-t} \). Thus \(a^t \) is invertible relative to \(e \). Hence \(a^t \in M(e) \) and so \(a^t \) is a group member in \(N \). It follows that \(M(a^t) = M(e) = M(a^n) \).

We now introduce the notion of pseudogroup.

DEFINITION 9. Let \(a \) be a group member in a near-ring \(N \) and let
\[
P(a) = \{ b \mid b \in N \text{ and } b^n \in M(a) \text{ for some positive integer } n \}.
\]
The set \(P(a) \) is called a pseudogroup in \(N \). An element \(b \) in \(P(a) \) is called a pseudogroup member in \(N \).

THEOREM 10. If \(N \) is a near-ring and \(a, b \) are pseudogroup members in \(N \), then the pseudogroups containing \(a \) and \(b \) are either disjoint or identical.
Proof. It follows from the above Theorem 8 that each pseudogroup member in N is a member of one and only one pseudogroup. Hence, if for some element c in N we have that c is in the pseudogroup containing a and c is also in the pseudogroup containing b, then these pseudogroups are identical.

Theorem 11. If N is a commutative near-ring, then every pseudogroup in N is a semigroup.

Proof. Let a, b be members of some pseudogroup $P(e)P$ in N. Then there exist positive integers n and m such that $a^n \in M(e)$ and $b^m \in M(e)$. Hence $(ab)^{nm} = a^{nm}b^{nm} \in M(e)$, so that $P(e)$ is closed with respect to multiplication, and thus is a semigroup.

Theorem 12. Every finite near-ring consists entirely of pseudogroup members.

Proof. Let N be a finite near-ring and let r be the number of elements in N. Let a any element in N. If a is nilpotent, then $a^n = 0$ for some positive integer n, and hence a is in the pseudogroup $P(0)$. Now suppose a is not nilpotent and form the sequence $a, a^2, \ldots, a^r, \ldots$. Since there are only r elements in N, including zero, not every element in the sequence is distinct. Let n be the smallest integer such that $a^n = a^{n+m}$ for some integer m. We now show that the set $G = \{a^n, a^{n+1}, \ldots, a^{n+m-1}\}$ is a group. We note first that G is a finite semigroup. Further, the cancellation laws hold in G, for if $a^{n+r}a^{n+s} = a^{n+t}a^{n+t}$, then $(n+r)+(n+s) = (n+r)+(n+t)(\text{modulom})$. It follows that $n + s = n + t(\text{modulom})$ so that $a^{n+s} = a^{n+t}$. The right cancellation may be shown similarly. But every finite semigroup in which the cancellation laws hold is a group. Hence G is a multiplicative group, so that a^n is a group member in N, and a is thus a pseudogroup in N.

References

1. W.E.Barnes, The group membership of a polynomial in an element algebraic over a field, Arkiv fur Matematik. 8 (1957), 166-168.

Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea