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MONOTONICITY OF HYPERBOLIC CURVATURE

JoNG Su AN AND TAI SUNG SONG

1. Introduction

Let Q be a hyperbolic region in the complex plane C and Kq (a,7)
denote the hyperbolic curvature of a C? curve v in  at a point a €
4. Flinn and Osgood [3] established a monotoricity property for the
hyperbolic curvature. They proved that if £ is a simply connected

subregion of a simply connected hyperbolic region A, then for any C?
curve «y in {2

max { K¢ (6,7),2} < max {Ka(a,7) ,2}.

They also showed that the monotonicity property would not extend to
arbitrary hyperbolic regions.

In this paper we show that the conclusion of the Flinn-Osgood
Monotonicity Theorem remains valid for arbitrary hyperbolic regions
provided that the group homomorphism g : ©(?,a) — 7(4,a) in-
duced by the inclusion mapping ¢ : {2 — A is a monomorphism.

2. Universal covering projections

Let D be the open unit disk in the complex plane C. Suppose 2
18 a hyperbolic region C and a € Q. Then there exists a holomorphic
universal covering projection f : (D,0) — (£,a). This is called the
General Riemann Mapping Theorem (see {1, p.142 | or (2, p.39 ]); in
case {2 is simply connected this is the Riemann Mapping Theorem. We
shall need the following properties of a covering projection (see [4, Ch.

5])or {8, Ch. 3}).
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(1) Given any path v in § with initial point a, there is a unique
path % in D with initial point 0 such that f o4 = . The path ¥ is
called the lift of ¥ via f.

(2) Suppose 71, 72 are two paths in Q from a to the common terminal
point b. Let ¥, be the unique lift of v, via f with initial point 0. Then
71 and ¥, have the same terminal point if and only if 7; is homotopic
to vz in § with fixed end points.

(3) Suppose v is a closed path in Q based at a and ¥ is the Lift of
4 via. f with initial point 0. Then ¥ is a closed path if and only if 7 is
null homotopic.

(4) If g : (D,0) — (£, a) is any holomorphic function, then there is
a unique holomorphic function g : (D,0) — (D,0) such that fog = g.
The function ¢ is called the lift of g relative to f.

We briefty indicate the construction of g. For z € D let ¥ be any
path in D from 0 to 7. Then vy = go¥ is a path in Q from a to z = ¢ (2).
Since f is a covering projection, there is a unique lift 3;0’:' v in D via
f with initial point 0. Let @ be the terminal point of 8. Then define
g (2) = . It remains to show that § is well-defined. Suppose 71,72 are
both paths in D from 0 to Z. Then v, = go¥, (j = 1,2) are paths in £
from a to z. Since D is simply connected, ¥; is homotopic to 7, in D.
It follows that <, is homotopic to v, in Q. Let é, be the lift of y; via
f with initial point 0. Then 6; and 32 have the same terminal point
since 7, is homotopic to y2. This proves that g is well-defined.

We shall employ this lifting property in the special case where f :
(D,0) — (Q,a) and h : (D,0) — (A,a) are covering projections, & C
A and g : Q — A is the inclusion map. Then go f : (D,0) — (A,a)
has a lift § via h.

The fundamental group of {2 with base point a will be denoted by
7{Q,a). For a closed path 7 based at a, [v] is the homotopy class
determined by y. A continuous function ¢ : (Q,a) — (A,b) induces
a group homomorphism g, : 7 (Q,a) — 7 (A, b) defined by g.([7]} =
[g o]
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The following result is well known (see {6]). We include a proof for
the convenience of the reader.

Theorem 1. Suppose 2 and A are hyperbolic regions in C with
R CAandacQ Letg: Q- A be the inclusion maep and g, :
m(,a) — 7 (A, a) the induced group homomorphism. Assume that
f:(D,0) - (Q,a) and h: (D,0) — (A,a) are holomorphic universal
covering projections. If g. i3 a monomorphism, then there ewists a
conformal mapping § of (D,0) into itself such that f =go f =hog.

Proof. We already know that a holomorphic function g : (D,0) —
(D,0) exists such that go f = hog. All that remains is to show that §
1s one-to-one. Suppose 71,7, € D,z1 # Z2 and §(%1) = §(Z2). Let 7,
be the radial path in Q from 0 to 2; (7 =1,2). Then v, = fo7,isa
path in £ from a to f(Z;). Note that

f(Z) =h(§(21)) = h(g(z)) = f(Z2),

so that 1,7, both end at the same point. Because 7;,¥; do not have
the same endpoint but do have the same initial point, the paths y;, v,
are not homotopic in Q. Hence, [y *7; '] is nontrivial in = (,a).
Since g, is a monomophism, we conclude that [71 * Yy l] is also non-
trivial in # (A, a}, or 71 and 7, are not homotopic in A. If ’5') =go7,,
then

hog_,:ho'g}'o?]:fo'f},:'y,.

Thus, &; is a lift of 4, via the covering & : (D,0) — (A, a) and 0 is the
initial point of §,. Because ¥, is not homotopic to 7, in A, it follows
that é,and §; must have distinct endpoints. This contradicts the fact

that both &;and b, end at §(Z1) = ¢(%2). This contradiction shows
that §° must be injective.

Remark. For multiply connected regions 2 C A there is a simple
geometric criterion for g, to be a monomorphism. The condition is
that every hole in @ must contain at least one hole of A.
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3. Hyperbolic curvature

We begin by recalling a few basic facts about the hyperbolic cur-
vature. We refer the reader to [5],[6], and [7] for further details. Let
Ag (2) |dz] be the hyperbolic metric on the hyperbolic region Q. If v is
a C? curve in a hyperbolic region {2 with parametrization 2 = z (%),
then the hyperbolic curvature of v at a point z = z (t) is given by

Ka(e7) = 5o [eteom v {252 S

where

1 2 (1)

Ketem = i { 533 )

denotes the euclidean curvature of ¥ at z = z(t). Because the hy-
perbolic metric is invariant under holomorphic covering projections,
the same is true of the hyperbolic curvature. That is, Kq (z,7) =
Ka (f(2), f o) if @ and A are hyperbolic regions and f:Q — Aisa
holomorphic covering projection of {2 onto A.

Lemma. Suppose Q and A are hyperbolic simply connected regions
in C. If g is a conformal mapping of Q onto g{(Q) C A, then for any
path 7y in §)

max {Kq (4,7),2} < max{Ka (g(a),g07),2}.

Proof. Since the hyperbolic curvature is a conformal invariant,

Ka (a,7) = Kya) (9(a),g07)-
The Flinn-Osgood Monotonicity Theorem yields

max { K o) (9(a), g 07),2} < max {Ka (g(a),g07),2}
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so this establishes the lemma.
We can now state our main result.

Theorem 2. Suppose Q and A are hyperbolic regions, 8 C A and
a€ . Ifg:Q — A is the inclusion map and g, : 7(Q,a) — (A, a)
18 @ monomorphism, then for any path vy through a,

max {Kgq (a,7),2} < max {Ka(a,7),2}.

Proof. We nced only consider the case in which Kq {a,v) > 2. Let
f:(D,0) - (Q,a) and h: (D,0) — (A,a) be holomorphic universal
covering projections. Since g, is a monomorphism, it follows from
Theorem 1 that there is a conformal mapping ¢ of (D,0) into itself
such that go f = hog. Let 7 be the lift of v via f with initial point 0.
Then é = go% is the lift of y via h with initial point 0. The invariance
of hyperbolic curvature under holomorphic coverings implies that

Ka(a,7) = Kp(0,), Ka (a,7) = Kb (0,3),
so it suffices to show that

Kp(0,5) < Kp (0,3) .

Since § is a conformal mapping of (D,0) into itself and go ¥ = 5,
Kp(0,7) > 2, this is a consequence of previous Lemma.

If  is & simply connected subregion of a hyperbolic region A, then
7(Q,a) = 1 for each a € Q. Hence the induced group homomorphism
gx : m(2,a) - w(A,a) is a monomorphism. Thus, we obtain the
following result.

Corollary. Suppose A is a hyperbolic region in C and X is a simply
connected subregion of A. If v is a path n 2, then for all z € v

max {Kq (2,7),2} < max {KA (2,7) ,2}.
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