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1. Introducition

Queueing theory was developed to provide
models to predict behavior of systems. that
attempt to provide service for randomly
arriving demands; and not unnaturally, then,
the earliest problems studied were those of
telephone traffic congestion. The pioneer in-
vestigator was the Danish mathematician A.
K. Erlang, who, in 1909, published The The-
ory of Probabilities and Telephone Conver-
sations!'). After the Second World War
when' applications of mathematical models
and methods in technology and other applied
areas rose to a le'vel previously unknown, it
was realized that queueing theory too had a
very broad field of applicability to various
scientific and- organizational phenomenal®.

There are extensive theoretical work on
service systems, but they produce only
steady —state results that are analytically
simple. This is often done with little regard
for the mathematical assumptions underlying
these results. Moreover such results common-
ly do not answer the real questions one is
facing in the design of a facility, and in
rare -cases the measures of performance
based on steady—state assumptions may
actually be misleading. For instance, for a
system with rare arrivals of large groups,
steady —state solution gives no information
on the fluctuations of the queue length ex-
cept an averaging property. Ignoring such
fluctuations in a design may have cata-
strophic results. Especially for the analysis
of system which has to deal with the de-

mand of a certain time period, the steady-

state assumption is ill—suited.

And, for the signalized intersection
system, there are a number of steady—state
delay models. However, most of existing
models have deficiencies generally in expect-
ing really consistent and accurate results.
Any steady—state model that does not as-
sume uniform arrivals will estimate that the
delay approaches infinity as the v/c ratio
approaches 1 which does not develop at real
intersection.®? Moreover, the estimated delay
has to be ‘adjusted by the progression factor
for the central controlled signal system that
is the general operation technique in today,
which increases the inaccuracy resulting
from the multiplication of tiwo separate
methods which have individually different as-
sumptions.

Therefore it is strongly required that the
methods to account for the way the queue
varies over time should be developed, which
Unfortu-

nately, the modeling of transient queue be-

means time dependent analysis.

havior is not a very well—developed field.
There are very few results on the transient
analysis, which are analytically explicit. In

_the continuous time queue analysis, the ana-

lytical expressions developed so far are for
Poisson arrivals and exponential service
times because the mathematics become ex-
tremely complicated with the slightest relax-
ation from those assumptions. And even the

_developed tend to be complicated and are

nearly unsuitable for direct numerical analy-
sis. So the results for the time—dependent
behavior of its state probabilities leave much
to be desired.
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‘In this paper the discrete time approach
to transient probabilities is introduced. In
the transition probability, an approach using
the number of arrivals and departures dur-
ing the given discrete time interval is devel-
oped, which could shorten the computing
time as well as be smtable for the delay es-
timation purpose.

2. Existing Methodology
2.1 Classic Continuous Time Solution

Several methods have been used to solve
this problem since A. Clarke gave his time
—dependent solution in 1953. Among them,
it is Bailey’s approach that has been the
most popular over the years. Bailey’s ap-
proach to the time dependent problem, pro-
posed in 1954, was via generating functions
for the partial differential equation. The
state pfobabilities, {P.(t)}, that at an arbi-
trary time t there are n custorhers, assum-
ing that the initial system size at time zero
is i, in a single—channel system with Pois-
son input, exponential service, ‘and infinite

waiting room' isi*)

Po(t)=e” M RT 1) ™
L_i(2VA ut)
+(\/7/7)i""+11n+i+1(2\/77t)
+A=a/w) A u)”
L3 ETD T )]

where 1(z) = kz_:_O (2/2)™/K1 (k+v)! is the

modiﬁ_ed Bessel fuﬁction of the first kind of
order k K '

9

i: = intial system size at time 0
P!
n

arrival rate

service rate.

2.2 Sharma’s Solution

He' proposed iwo dimensional state model
for Markovian queues without reference to
Bessel functions while the claassic M/M/1/
o0 <iueue is obtained on the basis of a one
—dimensional state model representing- the
number of units in the system at a given
time. The two dimensions represent
respectively the number of arrivals at, and
the number of departures from, the system
at a given time. It is remarked that the
com;?utation time ofi following “expression is
almost half of that of classic method. He
showed that the computing time by the
systém Micro VAX T is- taken 84.71 to
532. 51 seconds accordmg to parameter while
classlc method is taken 102.73 to 122159
seconds®. However, - the expression ‘is also
complicated and the combuting time is still
unsatisfactory. The probabilities of customers
remain in the system at time t whlch is
taken form page 13 of [2] by putting p=1/
o are
Pr)=(1-2/u)X A/ ) +& ¥ ** (u/ )
o r+k _

SADYK ] Dh-m)( 2™ Ym !

=€ m=0
2.3 Neuts’ Discrete Time Analysis

: He';t‘ proposed a relatively unsophisticated

method which is useful in the analysis of

unstable queues. In solving the unstable
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queues, the existing structural formulas are
analytically complicated and to obtain the
results from those continuous time solutions
involve heavy aléebraic manipulations. And,
in analyzing it by the simulation techniques,
the structure of the queue might be incor-
rectly or insufficiently used and excessive
computing time would be required. So he
tried to develop the discrete time queueing
analysis method to obtain the numerical
results efficiently by the Markov chain algo-
rithm. He soved transient behavior of queues
at each discrete time by computing in terms
of the successive matrix convolution prod-
ucts of the transition matrix of the imbed-
ded Markov renewal process. The probabili-

ties of system size i and units of service -

time left j at nth unit time P.(i,j) for gener-
ally- distributed service time system ist¥

(@) Pal00) = polPa-1(0,0) + Pat(1,1)],
(b) Palii) = poPatlij+l) + 35, orePact
(v j+1) + {pPa-1(0,0)+poPa-1(i+1,1)
43 pvPaa(v, D),
for i=1,..k and j=1,..,.L2-L.

(©) Pali) = poParlij*D) + 3 pivPor

veick

(vi+1) + ri{pePaarLD) + 30 Piovt

v=i~k+1

Pn-l(V,l)},
for i=k+1,.,.Li-1 and j=1,..La-1.

(d) PulLii) = Par(Luj+D) + 3 (1-5p0

. v=l k=0
Pn—l(LlV, ]+1) + rj{z a-= pk)Pn-l
v=]
(Li-v+1,1)},
for j=1,..L2-1.

(e) P‘.(l,LZ) = rLZ{pipn"l(0,0) + popn(l’*'l,l)

+ 3 Poaly D)), for i=1,.k.

v=1
(©) Paile) = rislpoPat+LD) + 3 Drvet
v=i-k+1
Pra(v 1)),

for i=k+1,..La-1.

(g) PalLiL2) = n:z{kE (1-3 pwPa-1 (Lt

v=1
-v+1,1},
where p, = probability of v arrivals during
a unit time
ry = vprobability that a customer requires
v units of service time
k = max number of arrivals during a
unit time
L, = system capacity
L. = max units of service time.

3. A New Approach to Discrete
Time Queue

3.1 Description of Model

The theory of queues, more generally that
of stochastic models, suffer from the insuffi-
cient development of the interface between
structural —analytical results on one hand
and directly applicable numerical methods on
the other hand. At this point of view,
Neuts' discrete time method is very useful
for the transient analysis.

The new model also basically forms the
discrete time queueing analysis. Mathe-
matically the model is built in terms of the
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Markov chain and derives discrete time
queue features from the transition probabili-
ties of this chain and the single step transi-

tion probabilities can be arranged simply

using the number of arrivals and departures

during a unit time interval. So, in the new
approach, any discrete probability arrival dis-
tribution with geometric service rate system
can be assumed. However, so long as the
transition probabilities satisfy the Markov
chain, one may relaxed from the structural
restrictions of probability distribution which
are merely mathematical assumption for the

interpretation of real system so that any

empirical” probabilitic distributions can be ,
employed in obtaining’ the_ transition probabil-

ities.
The model in this study is much simpler
than the classic contin_uous time solutions.
" At a glance, this approaches are to be re-
garded as approximations to continuous
ones. It may usually be traced to the pre-
vailing thought before the trial to computer.
And, from the computational viewopint, con-
tinuous time models are substantially more
delicate to analyze. Even in comparison with
other discrete time methods which analyze
the residual service time for each unit time
interval, the new model tréats the sequences
of queues with more efficiency, so that it is
suitable for system analysis that there is no
necessity to analyze the waiting time distri-
bution separately. ‘Consequently, from the

viewpoint of numerical analysis, this model

has the most obvious advantage in computa-.

tion time while the system may be evaluat-
_ed accurately.

' 3.2§Dis¢rete—Parameter Markov Chain

- L;tet the sequence of “random variables
(arrivals and departures), (Xi;=0,1,. | X;=
0,1,,.}, represent the exhaustive and mutual-

ly exclusive states of a system at any time.

Thep the markov chain is, for all j,
Pr{X;=n | Xo=ko, X1=k1, Xz=kz,....Xj-1=Kj-1}
= Pr{X;=n | X;-=k} ’

Consider the intersection queueing system,
wheEré the number of arrivals and depar-
tures during a unit time interval T are inde-
pendently and identically distributed random

‘variables with the discrete probability distri-

butions. Then the imbedded stocahstic proc-
ess; X(t:), where X denotes the number of
vehicles in the sysiem and t,tpts,... are the
successive unit times, can be shown to be
Maf'kov chain as. follows. Since the state
space is discrete, let us use a .subscﬁﬁt nota-
tiorg so that X; represents the number of ve-

hicles remaining in the intersection. system

‘at j th unit time. We can then write for all

n=0 that .
X5 + At - Dy (Xj21)
Xj*l = { .
‘ Aja X; =0

where X; is the number in the system at j
th unit time and A;+1 and D;+1 are the
number of vehicles arrived and 'depa‘rted
respectively during the unit time ihterval T;
+1.

The random variable: Aj+1 and D,+1 by
assumption depend only on T;+1 and nei-
thex[‘ on the previous number of arrivals and

©1) | pirical means relying .on observation.



H Journal of Korea Transportation Research Society Vol. 12, No. 4, 1994

departures nor on the length of the queue,
so let it henceforth be denoted by A and D.
Since the unit time T;+1 has the identical

time interval for all times, so let it hence-

forth be denoted by T. And let

an = Pr{n arrivals during T}
dn = Pr{n departures during T}.
Then it follows that
for n=0,
ao (k=0
Pr{X;1=0 | X;=k} =
aud: (k=1),
for n2>1,
ax (k=0)

Pr{Xj.1=n | X;=k}= r:;_kardkﬂ-n(lSk(n)
:g adi-ra {n<k).
Hence we can see that the imbedded process
is Markovian, since only the indices(k,n,r)
are involved and furthermore since the state
variable is discrete, it is discrete—parameter
Markow chain. _
Now let the state probabilities P,(j) = Pr
{Xj=n} and the conditional probabilities Pr
{Xi=n | Xj-1=k} = qu, then
P.() = ZWP{X;=n, X;- 1=k}
ZP{X;=n | X;-1=k} Pr{X;-i=k)
ZiPu(i—1) g
'For homogeneous chains,

Pu(j) = ZP{X;=n, Xo=i} Pr{X,=i}

= ZP(0)q.0.
Po(j)
Py
And letting PG) = | Pu(j)

3

PG) = POPY.

And the transition matrix is

Qo Qoi Qo2 Qm * "t
Qo dn iz Q- -
P=( an aa a2 aqu--"--
Q% g gz gz -t

\ A j
where 2.qw = 1 for all k,
G = 0 for all k and n.

3.3 Geometric Arrivals and Depar-
tures

Consider a single server queueing system
with the finite capacity N in discrete time
Markov chain. The elementary time interval
is chosen as our time unit. And assume that
the
number of arrivals and departures during
the successive unit time intervals are inde-
pendent, identically distributed random varia-
bles. Furthermore' ar, r=0,1,..m, is the

probabilities that r vehicles join the system

during a given unit time interval. (a;+a;

+..+a,=1). And d,, s=0,1,.,n, is the
probabilities that s vehicles depart the
system during a gfven unit time interval(d,
+dy+....4+d,=1). Then the transition proba-
bility will be different in compliance with
the assumptions of arrival and departure dis-
tribution.

As mentioned earlier in 3.1, the new ap-
proach, so long as the transition - probabilities
satisfy the Markow chain, could be applied
to any kind of discrete probability distribu
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. tions. However, one should be aware that,
even though it is a discrete probability dis-
tribution, there will be errors if Pr{more
than 1 departure during a unit time interval
T} is not zero. Since, in thqse service
syétems, there is such an implicit assump-
tion in the transition probability q,, that the
number of départures during one unit time
interval does not exceed i even though the
maximum number of departures is n. So
there are errors in transition probabili.ty Qi
when i<s and 0<i. However, there are no
such errors in geometric service models.
Since m is 1 in geometric distributions so
the case of i<s is only when i is zero. In

this study, the model assumes the geometric

arrival and departure distribution. In geomet-
ric arrival and departure assumprions, m
and n are 1 so the probabilities of arrivals

and departures for the single transition .

time are
qy = ( 1- A)T
a = AT
d = 1- ﬂ) T
0 1 2 3 4
_ :
0 ao ar 0 0 0
1 | acdi aodo-ardi aido 0 0
2 0 acdh acd-aidt aido 0
3 0 0 adi aodo-ard: aido
N-1] 0 0 0 0 0
N 0 0 0 0 0
“~

d1 ;= /IT ) .
where T is the unit time interval.

3.4 State Probabilities

The state probabilities P.(;) in geometric
arrival departure assumption is

Then P. (,) satisfy the followmg recur--
rence relations in j for all }=0:
For n=0,

Po(j) = Po(j=1){a0} + Pl(J 1){aod1}
For n-l,

Pi;) = Po(j=1){a} + Pl(j‘l)_{éodo_ +
aidi} '+ Pa(j—D{asd,).
For 2=<n<N,

Pup) = Po(j=1{aid} + Pn(:—x){aodo
+ aldx} + Pn+l(3—1){aodl}
For n=N,

P,;;) = Py 1(1-1){axdo} + Pu(i~1){adds

+ a,d. + aldo}.

And the transition matrix. is

.....

o o o o
o o o o
o O o o
o o O © 2

..... 0 ach - adeaidt ado -

aodo-ard
~aide

-

..... 0 0 aoch



3.5 Intersection Delay Model

Suppose a signalized intersection system
which has two different demand rates as il-
lustrated in Figure 3.1. In this case, there
are four different time intervals by the com-
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bination of arrival and service rates. Since
P = f{lu}, each interval has the different
transition marix. Using the probabilities at
the end of each interval as the initial proba-
bilities for the next, the state probabilities at
unit time j is

PG) = POPP,2pp 9

arrival rate
A2
AL Sn—
unit time
departure rate 4
“2
it D s is——v**jwt
#1 PR —>
J unit time
Pl————hn—— Pg P3 ————f— P,‘

Fig 3.1 Arrivals and departures of intersection system

For accuracy, one can. employ more varia-
ble, or non-—stationary arrival rates. More-
over, more detailed departure rates, if avail-
able, are to be applied to the model. The re-
currence relations are valid also for the
system in which the demand probabilities
vary with time can be done with minor ob-
vious changes but the point of issue for the
detailed variable demand rates is the com-
puting time. For the non-—stationary
arrivals, the demand interval is divided into
short time period assuming that the mean
demand flow during T is considéred to be
stationary".

When the demand interval is equal to the

unit time interval T then the above Equa-

tion will be transformed to

PG = PWO) P, P; P3 ... P
Now let Q(j) be the random variable repre-
senting the queue length at unit time j, then

QG = PG VT
And the total delay of a signal cycle D is
CY/T
D=T 3 Q.
j=1
Letting the unit delay(actually this not the
delay) T*Q(j) = D(j),

1) The demand interval should be greater than or equal
to the unit time interval since it is assumed, in Markov
chain, that the transition probabilities are stationary

over time.
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cy/r
D = 3 D().
=1
And the average delay per vehicle d is
cY/T A .
d = 2 {DGV A}

j=1
4. Conclusions

In this study, a new approach to transition
probabilities is developed by simply using the
number of arrivals and departures during a unit
time interval without analysis of service time. In
delay estifnation, .computation time is very im-
portant particularly for wide network analyses.
From the -viewpoint of numerical analysis, the
new approach for the transient behavior of in-
tersection queue has the most obvious advantage
in computation time compared with not only
classic continuous time solution but also existimg
discrete time analysis while the system may be
evaluated accurately. ‘

Mathematically, the model is built in
terms of the Markov chain and derives dis-
crete time queue features from the transi-

" tion probabilties of this chain. Then, by this

discrete time -analysis method, a signalized .

intersection queueing system with time—
varying arrivals is designed with considera-
tion of the progression effect.

" The mathematical exression and its computa-
tion is more sophisticated than those of existing
models. And the information required are also
more demanding. To expect the reliable results,
more detailed information in the traffic pattern
are reguired. An -improvement should be fol-
lowed in obtaining . the precise mfosznauon and
in manipulating them efﬁcxenﬂy However, con-

sidering the more vb.nous factors affecung delay

such as time—varying demand, system capacity,
offset value, etc., the estimated results form the
model would be reliable.
The expected improvements by the pro-
posed model are: ’
+ dynamic analysis
* realistic estimation particularly when v
approaches ¢ .
-‘accurate. analysis with time varying
arrival rates’ '
s flexible selection of analysis period
+ consideration of progression quality in
. the model
« analysis of progression effect on delay
‘when v/c > 1
di‘used ‘not only for single intersections
‘but also for networks
+ estimation of queue growth rate and
| queue clearance time.
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