ON RELATIVE CHINESE REMAINDER THEOREM

YOUNG SOO PARK AND SEOG-HOON RIM

Previously T. Porter [3] has given a relative Chinese Remainder Theorem under the hypothesis that given ring R has at least one τ-closed maximal ideal (by his notation $\text{Max}_\tau(R) \neq \phi$). In this short paper we drop his overall hypothesis that $\text{Max}_\tau(R) \neq \phi$ and give the proof and some related results with this Theorem.

In this paper R will always denote a commutative ring with identity element and all modules will be unitary left R-modules unless otherwise specified.

Let τ be a given hereditary torsion theory for left R-module category R-Mod. The class of all τ-torsion left R-modules, denoted by \mathcal{J} is closed under homomorphic images, submodules, direct sums and extensions. And the class of all τ-torsionfree left R-modules, denoted by \mathcal{F}, is closed under taking submodules, injective hulls, direct products, and isomorphic copies([2], Proposition 1.7 and 1.10).

Notation and terminology concerning (hereditary) torsion theories on R-Mod will follow [2]. In particular, if τ is a torsion theory on R-Mod, then a left R-submodule N of M is said to be τ-closed (τ-dense, resp.) submodule of M if and only if M/N is τ-torsionfree (τ-torsion, resp.). A module M is called τ-cocritical if $M \in \mathcal{F}$ and $M/N \in \mathcal{J}$ for each nonzero submodule N of M. A left ideal L of R is τ-critical if R/L is τ-cocritical.

Follow Porter [3], we denote $\text{Max}_\tau(M)$ be the set of all maximal τ-closed submodules of M and we say ideals I, J are τ-comaximal if $I + J$ is τ-dense in R. Let I_1, I_2, \ldots, I_n be ideals of R, they are pairwise τ-comaximal in case $I_i + I_j$ is τ-dense in R whenever $i \neq j$. For example, if each I_i is a maximal τ-closed ideal of R or each I_i is a τ-critical ideal, then these ideals are pairwise τ-comaximal.

Received November 9, 1992. Revised February 17, 1993.

This work was partially supported by the Basic Science Research Institute Programs, Ministry of Education, 1992, and KOSEF-TGRC.
The following Lemma 1 and Theorem 2 can be found in [3], we give the proof of Lemma 1 for the completeness of this paper.

Lemma 1. (Porter, [3]) Let M be a left R-module, and I, J be τ-comaximal ideals in R, then $(IM \cap JM)/IJM$ is τ-torsion.

Proof. If $x \in IM \cap JM$, $(I + J)x \in IJM$. Since $I + J$ is τ-dense in R, we have that $ann(x + IJM)$ is τ-dense in R. As x was arbitrary we find $ann((IM \cap JM)/(IJ)M) \supseteq I + J$. Thus we have the desired result.

The author can find the following relative Chinese Remainder Theorem in [3]. The version of Porter gave us an impression to study it.

Theorem 2 (Porter). Let R be a commutative ring and τ be a torsion theory on R-Mod. Suppose that $\text{Max}_\tau(R) \neq \emptyset$ and let $\{I_i|i = 1, 2, \cdots, n\}$ be a finite family of pairwise τ-comaximal ideals in R. For any left R-module M, we have

1. $(\prod_{i=1}^n I_i)M \longrightarrow (\cap_{i=1}^n I_i)M$ is τ-surjective and
2. $M \longrightarrow \oplus_{i=1}^n M/I_iM$ is τ-surjective with kernel $\cap_{i=1}^n I_iM$

The condition $\text{Max}_\tau(R) \neq \emptyset$ was used by the fact that every member in $\text{Max}_\tau(R)$ is prime ideal in R, which is Albu and Năstăsescu’s work [1].

In order to drop the condition $\text{Max}_\tau(R) \neq \emptyset$, we need a lemma, which is useful in the proof of main Theorem.

Lemma 3. Let R be a commutative ring and $\{I_i|i = 1, 2, \cdots, n\}$ be pairwise τ-comaximal ideals of R. Let M be any left R-module, then we have the following:

1. $I_i \cap \text{j}_{i \neq i} I_j$ is τ-dense in R for each $i = 1, 2, \cdots, n$.
2. $I_iM + (\cap_{j \neq i} I_j)M$ is τ-dense in M for each $i = 1, 2, \cdots, n$.

Proof. (1) We prove for the case $I_1 + D_1$ is τ-dense in R, where $D_1 = \cap_{j \neq 1} I_j$. For the case $n = 1$ is clear. Assume that $I_1 + \cap_{j=2}^k I_j$ is τ-dense in R.

Note that $I_1 + \cap_{j=2}^{k+1} I_j$ contains $(I_1 + \cap_{j=2}^k I_j)(I_1 + I_{k+1})$, which is τ-dense in R, thus $I_1 + \cap_{j=2}^{k+1}$ is τ-dense in R i.e., the induction step is proved. Consequently $I_1 + \cap_{j=2}^n I_j = I_1 + D_1$ is τ-dense in R. A similar
On relative chinese remainder theorem

argument shows that for each \(i = 1, 2, \cdots, n \), \(I_i + D_i \) is \(\tau \)-dense in \(R \), where \(D_i = I_1 \cap I_2 \cap \cdots \cap I_{i-1} \cap I_{i+1} \cap \cdots \cap I_n \).

(2) For each \(i = 1, 2, \cdots, n \), note that \(I_i M + D_i M = (I_i + D_i)M \).
\(M/(I_i + D_i)M \) can be a left \(R/(I_i + D_i) \)-module by the action
\((\tau + I_i + D_i)(m + (I_i + D_i)M) = \tau m + (I_i + D_i)M \)

We regard \(M/(I_i + D_i)M \) as a homomorphic image of free \(R/(I_i + D_i) \)-module \(\bigoplus_{\alpha \in M} (R/(I_i + D_i))_{\alpha} \), by (1) \(R/(I_i + D_i) \) is \(\tau \)-torsion and \(\tau \)-torsion class is closed under direct sum, we have that \(I_i M + D_i M \) is \(\tau \)-dense in \(M \).

Theorem 4. (Relative Chinese Remainder Theorem). Let \(R \) be a commutative ring and \(\{I_i | i = 1, 2, \cdots, n \} \) be a finite family of pairwise \(\tau \)-comaximal ideals in \(R \). For any left \(R \)-module \(M \), we have

1. \(\prod_{i=1}^{n} I_i M \rightarrow (\cap_{i=1}^{n} I_i) M \) is \(\tau \)-surjective and
2. \(M \rightarrow \bigoplus_{i=1}^{n} M/I_i M \) is \(\tau \)-surjective with kernel \(\cap_{i=1}^{n} I_i M \)

Proof. (1) The case \(n = 1 \) is trivial. Assume the result holds for any left \(R \)-module \(M \) and all families of pairwise \(\tau \)-comaximal ideals having fewer than \(n \). Consider \(\{I_i | i = 1, 2, \cdots, n \} \) and we denote by
\(P_i = \prod_{j \neq i} I_j \) and \(D_i = \cap_{j \neq i} I_j \) We want to show that \(I_i + P_i \) is \(\tau \)-dense in \(R \). By Lemma 3 (1), for each \(i = 1, 2, \cdots, n \), \(I_i \) and \(D_i \) is \(\tau \)-comaximal ideals in \(R \). Now apply to Lemma 1, we have that \(\frac{I_i + D_i}{I_i + D_i} \) is \(\tau \)-torsion, so its homomorphic image \(\frac{I_i + D_i}{I_i + P_i} \) is \(\tau \)-torsion. Consider the following short exact sequence,

\[
0 \rightarrow \frac{I_i + D_i}{I_i + P_i} \rightarrow \frac{R}{I_i + P_i} \rightarrow \frac{R}{I_i + D_i} \rightarrow 0
\]

By the Lemma 3(1), \(R/(I_i + D_i) \) is \(\tau \)-torsion module. And the \(\tau \)-torsion class is closed under extension, so we have \(R/(I_i + P_i) \) is \(\tau \)-torsion, thus \(I_i + P_i \) is \(\tau \)-dense in \(R \).

Now we can apply the Lemma 1, and get

\[
\left(\prod_{k=1}^{n} I_k \right) M = I_i P_i M \rightarrow I_i M \cap P_i M \text{ is an } \tau \text{-epimorphism.}
\]

Now by the induction hypothesis, \(I_i M \cap P_i M \rightarrow I_i M \cap (D_i M) \) is \(\tau \)-surjection.

Thus \(\left(\prod_{k=1}^{n} I_k \right) M \rightarrow (\cap_{k=1}^{n} I_k) M \) is \(\tau \)-surjection.

95
(2) The case \(n = 1 \) is clear. We also assume the result holds for any left \(R \)-module \(M \) and all families of pairwise \(\tau \)-comaximal ideals having fewer than \(n \).

Consider the following short exact sequence

\[
0 \longrightarrow \frac{M}{(\bigcap_{j \neq i} I_j M) \cap I_i M} \longrightarrow \frac{M}{D_i M} \oplus \frac{M}{I_i M} \longrightarrow \frac{M}{D_i M + I_i M} \longrightarrow 0
\]

By the Lemma 3(2), \(M/(D_i M + I_i M) \) is \(\tau \)-torsion. Thus \(M/(D_i M \cap I_i M) \) is \(\tau \)-dense in \(M/D_i M \oplus M/I_i M \). Now apply the induction hypothesis

\[
\frac{M}{D_i M} \oplus \frac{M}{I_i M} \longrightarrow \bigoplus_{j \neq i} \frac{M}{I_j M} \oplus \frac{M}{I_i M} \cong \bigoplus_{i=1}^n \frac{M}{I_i M}
\]

is \(\tau \)-surjection. Thus we have the desired result.

We examine \(R \)-submodules \(\{I_i M| i = 1, 2, \cdots, n\} \) of \(M \) in above lemmas and theorems, and consider the following concept in module theoretic sense.

Definition. Let \(M \) be a left \(R \)-module, a set of left \(R \)-submodules of \(M \) \(\{N_i|i = 1, 2, \cdots, n\} \) is called \(\tau \)-co-indepenent in \(M \) if (i) each \(N_i \) is not \(\tau \)-dense in \(M \) and (ii) \(N_i + \bigcap_{j \neq i} N_j \) is \(\tau \)-dense in \(M \) for each \(i = 1, 2, \cdots, n \).

For example, given pairwise \(\tau \)-commaximal ideals of commutative ring \(R \) \(\{I_i|i = 1, 2, \cdots, n\} \), consider left \(R \)-submodules \(\{I_i M| i = 1, 2, \cdots, n\} \), then the Lemma 3(2) shows that \(\{I_i M| i = 1, 2, \cdots, n\} \) is a set of \(\tau \)-co-indepenent in \(M \).

Properties on \(\tau \)-co-indepenent submodules can be found in [4].

In here, we mention only the fact related with Relative Chinese Remainder Theorem.

Proposition 5. Let \(R \) be a ring with identity (\(R \) may not be commutative) and let \(\{N_i|i = 1, 2, \cdots, n\} \) be a set of \(\tau \)-co-indepenent \(R \)-submodules of \(M \). Then we have \(M \longrightarrow \bigoplus_{i=1}^n \frac{M}{N_i} \) is \(\tau \)-surjectivewith kernel \(\bigcap_{i=1}^n N_i \).
Proof. The case $n = 1$ is clear. We assume for any left R-module M and all families of τ-coindependent submodules having less than n. Consider the following short exact sequence:

$$
0 \longrightarrow \frac{M}{(\cap_{i=1}^{n-1} N_i) \cap N_n} \longrightarrow \frac{M}{\cap_{i=1}^{n-1} N_i} \oplus \frac{M}{N_n} \longrightarrow \frac{M}{\cap_{i=1}^{n-1} N_i + N_n} \longrightarrow 0
$$

By the τ-coindependency of $\{N_i : i = 1, 2, \cdots, n\}$, $\cap_{i=1}^{n-1} N_i + N_n$ is τ-dense in M. Use the induction hypothesis we have the result.

Corollary 6. If $\text{Max}_\tau(M)$ is finite, then $M/J_\tau(M)$ is τ-semisimple τ-artinian, where $J_\tau(M)$ is the relative Jacobson radical of M.

Proof. Since $\text{Max}_\tau(M)$ is finite, $J_\tau(M) = \cap_{i=1}^{n} N_i$, where N_i is τ-critical submodules of M. And the set $\{N_i : i = 1, 2, \cdots, n\}$ forms a τ-coindependent submodules in M, then the relative Chinese Remainder Theorem (Theorem 4) gives an τ-epimorphism $\frac{M}{J_\tau(M)} \xrightarrow{\oplus} \frac{M}{\oplus_{i=1}^{n} N_i}$.

Hence $\frac{M}{J_\tau(M)}$ is τ-semisimple and τ-artinian as left R-module.

References

Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea

Department of Mathematics Education, Kyungpook National University, Taegu 702-701, Korea