THE GROUP OF UNITS IN A LEFT ARTINIAN RING

JUNCHEOL HAN

Let R be a left Artinian ring with identity 1 and let G be the group of units of R. It is shown that if G is finite, then R is finite. It is also shown that if 2.1 is a unit in R, then G is abelian if and only if R is commutative.

1. Introduction and basic definitions

An element a in R is said to be left quasi-regular if there exists $r \in R$ such that $r + a + ra = 0$. In this case, the element r is called a left quasi-inverse of a. A (right, left or two-sided) ideal I of R is said to be left quasi-regular if every element of I is left quasi-regular. Similarly, $a \in R$ is said to be right quasi-regular if there exists $r \in R$ such that $a + r + ar = 0$. Right quasi-inverse and right quasi-regular ideals are defined analogously. It is clear that if R has an identity 1, then a is left [resp. right] quasi-regular if and only if $1 + a$ is left [resp. right] invertible. The Jacobson radical J of R is defined by the left quasi-regular left ideal which contains every left quasi-regular left ideal of R. A ring R is said to be semisimple if its Jacobson radical J is zero. We note that R/J is semisimple.

In [2], Wedderburn-Artin have shown that if R is a semisimple left Artinian ring, then R is isomorphic to a direct sum of a finite number of simple rings. Hence we obtain the following:

THEOREM 1.1. If R is a left Artinian ring with identity, then $R/J \cong \bigoplus_{i=1}^{n} M_i(D_i)$ where $M_i(D_i)$ is the set of all the $n_i \times n_i$ matrices over a division ring D_i for each $i = 1, 2, \ldots, n$ and for some a positive integer n.

Proof. See [2, Theorem 2.14, p.431 and Theorem 3.3, p.435].

2. Properties of R when G is finite and abelian

In this section, we shall denote G by the group of units of R and denote J by the Jacobson radical of R.

We begin with the following lemma:

Lemma 2.1. Let R be a ring, and let G^* be the group of units of R/J. Then $g \in G$ if and only if $g + J \in G^*$.

Proof. (\Rightarrow) Clear.

(\Leftarrow) Suppose that $g^* = g + J \in G^*$. Then there exists $h^* = h + J \in G^*$ such that $g^*h^* = h^*g^* = 1^*$ where 1^* is the identity of G^*. So $1 - hg \in J$. By the definition of J, $1 + J \subseteq G$ and so gh and $hg \in G$. It is clear that $g \in G$.

Lemma 2.2. Let R be a ring with identity. Then $a \in R$ is left quasi-regular if and only if $a + J \in R/J$ is left quasi-regular.

Proof. It follows easily from Lemma 2.1.

Theorem 2.3. Let R be a left Artinian ring with identity 1. If G is finite group, then R is finite.

Proof. By Theorem 1.1, $R/J \cong \bigoplus_{i=1}^{n} M_i(D_i)$ where $M_i(D_i)$ is the set of all the $n_i \times n_i$ matrices over a division ring D_i for each $i = 1, 2, \ldots, n$ and for some a positive integer n. If G is finite, then by Lemma 2.1, G^*, the group of units of R/J, is also finite. Then D_i is finite for each $i = 1, 2, \ldots, n$. Indeed, suppose that D_i is infinite for some i. For simplicity of notation, we can assume $R/J = \bigoplus_{i=1}^{n} M_i(D_i)$. Consider a subset $G_i^* = \bigoplus_{i=1}^{n} H_i$ where $H_j = \{e_j\}, (e_j$ is the identity of $M_j(D_j)$ for $j \neq i$ and $H_i = \{(a_{st}) \in M_i(D_i) : a_{11} \in D_i \setminus \{0_i\}, a_{ss} = e_i, (2 \leq s \leq n_i), a_{st} = 0_i (2 \leq s, t \leq n_i, s \neq t)$ and e_i (resp. e_i) is zero (resp. identity) of $D_i\}$. Then G_i^* is a subgroup of G^* and $|G_i^*| = |D_i \setminus \{0_i\}|$ is infinite, which contradicts to the fact that G^* is finite group. Hence D_i is finite for each $i = 1, 2, \ldots, n$, and so R/J is finite. Since $1 + J \subseteq G$ and G is finite, J is finite. Hence $|R| = |J| \cdot |R/J|$ is finite.

Lemma 2.4. Let R be a ring with identity and let G be the group of units of R. If G is abelian group and a and b are quasi-regular elements of R, then $ab = ba$. In particular, J is commutative.
The Group of units in a left Artinian ring

Proof. Since $1 + J \subseteq G$ and a and $b \in J$, $(1 + a)(1 + b) = (1 + b)(1 + a)$. Hence $ab = ba$. Since each element of J is quasi-regular, J is commutative.

Remark. In Theorem 2.3, the condition that R has identity is necessary because p-Prüfer ring $Z(p^\infty)$ is infinite Artinian ring without identity which has no units.

Lemma 2.5. Let R be a left Artinian ring with identity. If G is abelian group, then $R/J \cong \bigoplus_{i=1}^{n} F_i$ where F_i is a field for each $i = 1, 2, \ldots, n$ and for some positive integer n.

Proof. By Theorem 1.1, $R/J \cong \bigoplus_{i=1}^{n} M_i(D_i)$ where $M_i(D_i)$ is the set of all the $n_i \times n_i$ matrices over a division ring D_i for each $i = 1, 2, \ldots, n$ and for some a positive integer n. First, we will show that each D_i is a field. Consider the subgroup $G_i^* = \bigoplus_{i=1}^{n} H_i$ of G^* given in the proof of Lemma 2.4. Since G^* is abelian, H_i is also abelian, and so D_i is abelian, that is, D_i is field. Let $D_i = F_i$. Next, we will show that $n_i = 1$ for each i. Assume that $n_i \geq 2$ for some i. Consider two elements $a = (a_{st})$ and $b = (b_{st})$ in $M_i(F_i)$ where if $s = t, a_{12} = a_{st} = c_i$, otherwise $a_{st} = 0_i$, and if $s = t, b_{21} = b_{st} = 1_i$, otherwise $b_{st} = 0_i$. By the simple calculation, we have $(1, 1)$-entry of $ab = 2 \neq 1 = (1, 1)$-entry of ba. Thus the group of units in $M_i(F_i)$ is not abelian, and so G^* is not abelian group, which is a contradiction. Hence we have the result.

Let R be a left Artinian ring with identity such that G is abelian group. By Lemma 2.5, $R/J \cong \bigoplus_{i=1}^{n} F_i$ where F_i is field for each i ($1 \leq i \leq n$) and for some positive integer n. For simplicity of notation, we can assume that $R/J \cong \bigoplus_{i=1}^{n} F_i$. Let $\phi : R \rightarrow R/J$ denote the canonical epimorphism and for each i, let $R_i = \phi^{-1}(\bigoplus_{j=1}^{n} H_j)$ where $H_j = \{0\} \{0_j\}$ $(0_j$ is additive identity of $F_j)$ for $j \neq i$ and $H_i = F_i$. Let $\phi_i = \phi|_{R_i}$. Then Ker $\phi_i = \{a \in R_i : \Pi_i(\phi_i(a)) = 0_i\}$ where Π_i is the projection of F_j to F_i. Note that Ker $\phi_i = J$ for each $i = 1, 2, \ldots, n$ and each R_i is an ideal of R. If 1_i is the identity of F_i, let 1_i^* denote the identity of $\phi_i = \bigoplus_{i=1}^{n} H_j$, that is, $1_i^* = \bigoplus_{i=1}^{n} a_j$ where $a_j = \phi_j$ for $j \neq i$ and $a_i = 1_i$. Observe that $\phi_i^{-1}(\{1_i^*\})$ is contained in the center of R_i if and only if $\phi_i^{-1}(\{-1_i^*\})$ is contained in the center of R_i.

101
Lemma 2.6. Let \(\phi : R \to R' \) be a ring epimorphism. If \(A \) and \(B \) are subsets of \(R' \), then \(\phi^{-1}(A + B) = \phi^{-1}(A) + \phi^{-1}(B) \).

Proof. If \(x \in \phi^{-1}(A + B) \), then \(\phi(x) = a + b \in A + B \). Since \(\phi \) is onto, there exist \(a* \in A \) and \(b* \in B \) such that \(\phi(a*) = a \) and \(\phi(b*) = b \). So \(\phi(x) = a + b = \phi(a*) + \phi(b*) = \phi(a* + b*) \in \phi(\phi^{-1}(A) + \phi^{-1}(B)) \). Hence \(x \in \phi^{-1}(A) + \phi^{-1}(B) \).

If \(x \in \phi^{-1}(A) + \phi^{-1}(B) \), then \(x = a* + b* \) where \(a* \in \phi^{-1}(A) \) and \(b* \in \phi^{-1}(B) \). So \(\phi(x) = \phi(a* + b*) = \phi(a*) + \phi(b*) \in A + B \). Hence \(x \in \phi^{-1}(A + B) \).

Lemma 2.7. If \(R \) is a left Artinian ring with identity, then \(R = R_1 + R_2 + \cdots + R_n \) where \(R_i = \phi^{-1}(\oplus_{j=1}^n H_i) \) with \(H_j = \{0\} \) (0 is additive identity of \(F_j \)) for \(j \neq i \) and \(H_i = F_i \).

Proof. Let \(F_i^* = \oplus_{j=1}^n H_i \) for each \(i \). Then \(\oplus_{i=1}^n F_i = F_1^* + F_2^* + \cdots + F_n^* \). Hence \(R = \phi^{-1}(R) = \phi^{-1}(R/J) = \phi^{-1}(\oplus F_i) = \phi^{-1}(F_1^* + F_2^* + \cdots + F_n^*) = \phi^{-1}(F_1^*) + \phi^{-1}(F_2^*) + \cdots + \phi^{-1}(F_n^*) = R_1 + R_2 + \cdots + R_n \) by Lemma 2.6.

Lemma 2.8. Let \(R \) be a ring with identity such that \(G \) is abelian group and \(R/J = \oplus_{i=1}^n F_i \) where each \(F_i \) is field. If \(\phi_i^{-1}(\{1_i^*\}) \subseteq Z(R_i) \) (center of \(R_i \)), then \(R \) is commutative.

Proof. Since \(R_i \) is an ideal of \(R \), if \(a \in R_i \), then \(a \) is quasi-regular in \(R_i \) if and only if \(a \) is quasi-regular in \(R \). Hence by Lemma 2.2, if \(a \in R_i \), then \(a \) is quasi-regular in \(R_i \) if and only if \(\phi(a) \) is quasi-regular in \(R/J \), that is, \(\phi_i(a) \) is quasi-regular in \(F_i^* = \oplus_{j=1}^n H_j \) where \(H_j = \{0\} \) for \(j \neq i \) and \(H_i = F_i \). Hence for \(a \in R_i \), \(a \) is quasi-regular if and only if \(\Pi_i(\phi_i(a)) + 1_i \neq 0_i \).

Now let \(a, b \in R_i \). If \(a \) and \(b \) are quasi-regular, then \(ab = ba \) by Lemma 2.4. If \(a \) is not quasi-regular, then \(\Pi_i(\phi_i(a)) + 1_i = 0_i \), that is, \(a \in \phi_i^{-1}(\{-1_i^*\}) \). Thus \(a \) is in the center of \(R_i \) and so \(ab = ba \). Similarly, if \(b \) is not quasi-regular, then \(ab = ba \).

Lemma 2.9. Let \(R \) be a ring with identity such that \(G \) is abelian group and \(R/J = \oplus_{i=1}^n F_i \) where each \(F_i \) is field. If \(\phi_i^{-1}(\{1_i^*\}) \subseteq Z(R_i) \) (center of \(R_i \)) for all \(i = 1, 2, \cdots, n \), then \(R \) is commutative.

Proof. Let \(a \in R_i \) and \(b \in R_j \) for \(i \neq j \) (1 \(\leq i, j \leq n \)). By Lemma 2.7, it suffices to show that \(ab = ba \). By Lemma 2.4, we may assume
that both \(a \) and \(b \) are not quasi-regular. Without loss of generality, we may assume that \(a \) is not quasi-regular. Then \(\Pi_i(\phi_i(a)) = -1_i \). Since \(ab = ba \) if and only if \((-a)b = b(-a)\), we may assume that \(\Pi_i(\phi_i(a)) = 1_i \). Now \(ab, ba \in R_i \cap R_j \) since \(R_i \) and \(R_j \) are ideals of \(R \). But for \(i \neq j \), \(R_i \cap R_j = J \). So \(ab, ba \in J \). Since \(J \subseteq Z(R_i) \) for each \(i \), \(ab \) and \(ba \) are in \(Z(R_i) \) for each \(i \). Hence \(a(ab) = (ab)a = a(ba) = (ba)a \), that is \(a^2b = ba^2 \). Since \(\Pi_i(\phi_i(a^2 - a)) = 0_i \), \(a^2 - a \in J \). So \((a^2 - a) = b(a^2 - a) \). Hence \(-ab = -ba \), that is, \(ab = ba \).

Lemma 2.10. Let \(R \) be a ring with identity such that \(G \) is abelian group and \(R/J = \bigoplus_{i=1}^n F_i \) where each \(F_i \) is field. If \(\text{char} \ (F_i) \neq 2 \) for some \(i \), then \(\phi_i^{-1}(\{1_i^2\}) \subseteq Z(R_i) \) (= center of \(R_i \)).

Proof. Since \(\text{char} \ (F_i) \neq 2 \) for some \(i \), \(1_i \neq -1_i \). For any \(u_i \in F_i \setminus \{0_i, -1_i\} \), there exists \(w/i \in F_i \setminus \{0_i, -1_i\} \) such that \(u_i \cdot w_i = 1_i \). So \(w_i + 1_i \neq 0_i \) and \(u_i + 1_i \neq 0_i \), and hence \(u_i \) and \(w_i \) are quasi-regular elements of \(F_i \). Let \(u = (0_i, \ldots, 0_{i-1}, u_i, 0_{i+1}, \ldots, 0_n) \) and \(w = (0 - 1_i, \ldots, 0_{i-1}, w_i, 0_{i+1}, \ldots, 0_n) \). Then \(u \) and \(w \) are quasi-regular in \(\bigoplus H_j \) where \(H_j = \{0_j\} \) for \(j \neq i \) and \(H_i = F_i \). Since \(\phi_i \) is onto, there exist \(a, b \) and \(e \in R_i \) such that \(\phi_i(a) = u \), \(\phi_i(b) = w \) and \(\phi_i(e) = 1_i \). Then \(\Pi_i(\phi_i(e - ab)) = \Pi_i(1_i - uw) = 0_i \), so \(e - ab \in \text{Ker} \phi_i = J \). Note that \(a \) and \(b \) are quasi-regular in \(R \) if and only if \(\phi(a) \) and \(\phi(b) \) are quasi-regular in \(R/J \). Let \(x \) be arbitrary element of \(R_i \). If \(x \) is quasi-regular, then by Lemma 2.4, \(x(e - ab) = (e - ab)x \) since \(e - ab \in J \). Hence \(xe - xab = ex - abx \). Since \(a \) and \(b \) are quasi-regular, \(xab = abx \). Thus \(xe = ex \). If \(x \) is not quasi-regular, then \(\Pi_i(\phi_i(x)) = -1_i = \Pi_i(\phi_i(-e)) \). So \(x + e \in \text{Ker} \phi_i = J \). Thus \(x + e = j \) for some \(j \in J \). Since \(j \) is quasi-regular in \(R_i \), \(ej = je \). So \(xe = (j - e)e = jes = ej - e^2 = e(j - e) = ex \). Thus \(\phi_i^{-1}(\{1_i^2\}) \subseteq Z(R_i) \).

Theorem 2.11. Let \(R \) be a left Artinian ring with identity 1 such that \(2 = 2 \cdot 1 \) is a unit in \(R \). Then \(G \) is abelian if and only if \(R \) is commutative.

Proof. \((\Leftarrow \) Clear.

\((\Rightarrow \) Suppose that \(G \) is abelian. Then \(R/J \cong \bigoplus_{i=1}^n F_i \), where \(F_i \) is a field for each \(i = 1, 2, \ldots, n \) and for some positive integer \(n \). For simplicity of notation, we can assume that \(R/J \cong \bigoplus_{i=1}^n F_i \). Since 2 is
unit in R, then $2 + J$ is unit in R/J by Lemma 2.1. So char(F_i) $\neq 2$ for each $i = 1, 2, \ldots, n$. Therefore, the theorem follows from Lemma 2.6, Lemma 2.9 and Lemma 2.10.

Remark. In Theorem 2.11, the condition that 2 is a unit in R is essential, since the ring R of upper triangular 2×2 matrices over Z_2 is not commutative but the group of units of R is abelian.

Corollary 2.12. Let R be a left Artinian ring with identity 1 such that $2 = 2 \cdot 1$ is a unit in R. If G is cyclic, then R is a finite commutative ring.

Proof. If G is cyclic, G is abelian. So by Theorem 2.11 R is commutative. Moreover, if G is cyclic, then R is finite. [See [3]]

References

Department of Mathematics, Kosin University, Pusan 606-080, Korea