W–REGULAR CONVERGENCE OF R^i–CONTINUA

C.J. Rhee*, I.S. Kim and R.S. Kim

1. Introduction and basic definitions

In the course of study of dendroids, Czuba [3] introduced a notion of R^i-continua which is a generalization of R-arc [1]. He showed a new class of non-contractible dendroids, namely of dendroids which contain an R^i-continuum. Subsequently Charatonik [2] attempted to extend the notion into hyperspace $C(X)$ of metric continuum X. In so doing, there were some oversights in extending some of the results relating R^i-continua of dendroids for metric continua. In fact, Proposition 1 in [2] is false (see example C below) and his proof of Theorem 6 in [2] is not correct (Take Example 4 in [4] with $K = [e, e']$ as an R^i-continuum of X and work it out. Then one sees that K $\notin K$ as he claimed otherwise.).

The aims of this paper are to introduce a notion of w-regular convergence which is weaker than 0-regular convergence and to prove that the w-regular convergence of a sequence $\{X_n\}_{n=1}^\infty$ to X_0 of subcontinua of a metric continuum X is a necessary and sufficient for the sequence $\{C(X_n)\}_{n=1}^\infty$ to converge to $C(X_0)$, and also to prove that if a metric continuum X contains an R^i-continuum with w-regular convergence, then the hyperspace $C(X)$ of X contains R^i-continuum.

Let (X, d) be a compact metric space. Let $2^X = \{ A \subset X : A$ is nonempty and closed $\}$ and let $C(X) = \{ A \in 2^X : A$ is connected $\}$. For each $A \in 2^X$ and $\varepsilon > 0$, let $N(\varepsilon, A) = \{ x \in X : d(x, a) < \varepsilon$ for some $a \in A \}$. If $A, B \in 2^X$, let $H(A, B) = \inf \{ \varepsilon > 0 : A \subset N(\varepsilon, B) \text{ and } B \subset N(\varepsilon, A) \}$; we call H the Hausdorff metric for 2^X (or $C(X)$) induced by d. The spaces 2^X and $C(X)$, with the Hausdorff metric, are called hyperspaces of X.

Received November 25, 1992. Revised April 19, 1993.
* This paper was partially supported by Korean Science and Engineering Foundation during his visit to Won Kwang University
** We thank referee for valuable suggestion.
We adopt the following notations: if \(x \in M \subseteq X \), let \(C(M) = \{ A \in C(X) : A \subseteq M \} \), \(T(x, M) = \{ A \in C(M) : x \in A \} \), and let \(M^* = \{ \{ x \} : x \in M \} \).

Let \(\{ A_n \}_{n=1}^{\infty} \) be a sequence of subsets of a space \(X \). Let \(LiA_n \) be the set of all \(x \in X \) such that if \(U \) is a neighborhood of \(x \), then \(U \cap A_n \neq \emptyset \) for infinitely many \(n \). If \(LiA_n = LsA_n = A \), then we say that the sequence \(\{ A_n \}_{n=1}^{\infty} \) converges to \(A \), written \(LtA_n = A \) or \(A_n \to A \). It is known [7] that if \(\{ A_n \}_{n=1}^{\infty} \) is a sequence in the hyperspace \(2^X \) (or \(C(X) \)) of the metric continuum \(X \), then \(A_n \to A \) if and only if \(H(A_n, A) \to 0 \) as \(n \to \infty \). For further properties of these definitions, we refer to [9].

2. Convergence of \(\{ C(X_n) \}_{n=1}^{\infty} \)

Let \(\{ X_n \}_{n=1}^{\infty} \) be a sequence of subcontinua of a metric continuum \(X \) which converges to \(X_0 \). One may ask under what condition imposed on the sequence so that \(\{ C(X_n) \}_{n=1}^{\infty} \) converges to \(C(X_0) \). In [9], 0-regular convergence was given. However, this condition is sufficient but not necessary. We provided here one simple condition, call it \(w \)-regular convergence, which is both necessary and sufficient.

Definition 2.1 [9]. A sequence \(\{ X_n \}_{n=1}^{\infty} \) of subsets of a metric continuum \(X \) is said to converge 0-regularly to \(X_0 \) provided that the following two conditions are satisfied:

(a) \(X_n \to X_0 \) as \(n \to \infty \);

(b) Given \(\varepsilon > 0 \), there exist \(\delta(\varepsilon) > 0 \) and a positive integer \(N \) such that if \(n \geq N \), then any two points of \(X_n \) less than \(\delta \) apart lie together in a connected subset of \(X_n \) of diameter less than \(\varepsilon \).

Theorem 2.2 [6]. If \(\{ X_n \}_{n=1}^{\infty} \) is a sequence of subcontinua of a metric continuum \(X \) such that \(X_n \to X_0 \) 0-regularly, then \(\{ C(X_n) \}_{n=1}^{\infty} \) converges to \(C(X_0) \) with respect to the Hausdorff metric.

Definition 2.3. A sequence \(\{ X_n \}_{n=1}^{\infty} \) of subsets of a metric continuum \(X \) is said to converge \(h \)-regularly to \(X_0 \) if it satisfies the following two conditions:

(a) \(X_n \to X_0 \);
W-regular convergence of R^1-continua

(b) Given $\varepsilon > 0$ and $A \in T(x, X_0)$, there exist $\delta > 0$ and a positive integer N such that each point $y \in X_n \cap V(x)$, where $V(x)$ is the δ-neighborhood of x, has an element $B \in T(y, X_n)$ such that $H(A, B) < \varepsilon$ for each $x \in X$ and for $n \geq N$.

Lemma 2.4 [6,9]. Let A be a metric continuum. For each $\varepsilon > 0$, there is a finite set $F = \{a_1, a_2, \ldots, a_n\} \subset A$ such that

1. $H(F, A) < \varepsilon$, and
2. the distance between any two consecutively indexed points of F is less than ε.

Lemma 2.5. If the sequence $\{X_n\}_{n=1}^\infty$ of subcontinua of a metric continuum X converges 0-regularly, then it converges h-regularly.

Proof. Let $\{X_n\}_{n=1}^\infty$ be a sequence of subcontinua of a metric space X which converges to X_0 0-regularly. Let $A \in T(x, X_0)$ and $\varepsilon > 0$. Since $X_n \to X_0$ 0-regularly, there exist $\delta, 0 < \delta < \varepsilon$, and a positive integer N_1 such that, for each $n > N_1$, if $p, q \in X_n$ such that $d(p, q) < \delta$, then there is a subcontinuum of X_n containing p and q, denoted by $B_{n}(p, q)$, such that the diameter of $B_{n}(p, q)$ is less than $\frac{\varepsilon}{2}$.

Since $X_n \to X_0$, there is a positive integer N_2 such that if $n > N_2$, then $H(X_n, X_0) < \frac{\delta}{3}$.

Since A is a subcontinuum, we let $F = \{a_1, a_2, \ldots, a_n\} \subset A$ such that $H(F, A) < \frac{\delta}{6}$ and $d(a_s, a_{s+1}) < \frac{\delta}{6}$ for each $s = 1, 2, \ldots, t - 1$, by Lemma 2.4. Let $F' = F \cup \{x\}$. Then $H(F', A) < \frac{\delta}{6}$, and $d(x, a_i) < \frac{\delta}{6}$ for some $a_i \in F$. Let $N = \max\{N_1, N_2\}$ and let V be the $\frac{\delta}{6}$-neighborhood of x in X and $y \in V \cap X_{n_0}$ for some $n_0 > N$.

For each $a_s \in F$, choose $y_s \in X_{n_0}$ such that $d(a_s, y_s) < \frac{\delta}{3}$. Then $d(y_s, y_{s+1}) < d(y_s, a_s) + d(a_s, a_{s+1}) + d(a_{s+1}, y_{s+1}) < \delta$. And $d(y, y_i) < d(y, x) + d(x, a_i) + d(a_i, y_i) < \delta$. Then we have subcontinua $B_{n_0}(y, y_i), B_{n_0}(y_s, y_{s+1})$ of diameter less than $\frac{\varepsilon}{2}$. Let $B_{n_0} = B_{n_0}(y, y_i) \cup_{s=1}^{t-1} B_{n_0}(y_s, y_{s+1})$. Then $B_{n_0} \in T(y, X_{n_0})$. And one can easily verify that $H(B_{n_0}, A) < \varepsilon$.

Definition 2.6. The sequence $\{X_n\}_{n=1}^\infty$ of subsets of a metric continuum X is said to converge to X_0 w-regularly if it satisfies the follow-
ings:

1. $X_n \to X_0$, and
2. Given $\varepsilon > 0, x \in X_0$, and $A \in T(x, X_0)$, there are a $\delta > 0$ and a positive integer N such that, whenever the δ-neighborhood V of $x \in X$ intersects $X_n, n \geq N$, then there is a point $y \in V \cap X_n$ having an element $B \in T(y, X_n)$ with $H(A, B) < \varepsilon$.

Theorem 2.7. h-regular convergence of a sequence of subcontinua of a metric continuum implies w-regular convergence.

Remark 2.8.

1. h-regular convergence does not imply 0-regular convergence.
2. w-regular convergence does not imply h-regular convergence.
3. $C(X_n) \to C(X_0)$ does not imply h-regular convergence of $X_n \to X_0$.

We illustrate the remark by the following two examples:

Example A. Let $X = [0,1] \times [0,1]$. Let $p_0 = (0,0)$ and $q_0 = (1,0)$ and let $X_0 = p_0q_0$ denote the line segment between p_0 and q_0. For each positive integer n, let $p_n = (0, \frac{1}{n})$ and $q_n = (1, \frac{1}{n})$. For each even positive integer $n = 2m$, let $X_m = p_{n-1}q_{n-1} \cup q_{n-1}p_n \cup p_nq_n$ if m is odd, and let $X_m = p_{n-1}q_{n-1} \cup p_{n-1}p_n \cup p_nq_n$ if m is even. Then $X_m \to X_0$ h-regularly but not 0-regularly at either p_0 or q_0.

Example B. We give a sequence of figures Z which converges to an arc. Then the convergence of the sequence is h-regular but not 0-regular. Let $p_0 = (0,0)$ and $s_0 = (1,0)$, and let $X_0 = p_0s_0$. For each positive integer n, let $p_n = (0, \frac{1}{2n-1}), q_n = (\frac{3}{4}, \frac{1}{2n-1}), r_n = (\frac{1}{4}, \frac{1}{2n}),$ and $s_n = (1, \frac{1}{2n})$. Let $X_n = p_nq_n \cup q_nr_n \cup r_ns_n$ for each n. Let $x = (\frac{1}{4}, 0)$ and $A = p_0x$. Then the convergence $X_n \to X_0$ is w-regular but not h-regular at x. Also it is easily seen that $LtC(X_n) = C(X_0)$.

Theorem 2.9. If the sequence $\{X_n\}_{n=1}^{\infty}$ of subsets of a metric continuum X converges to X_0 w-regularly, then the sequence $\{C(X_n)\}_{n=1}^{\infty}$ converges to $C(X_0)$.

Proof. Since $LtX_n = X_0, X_0^* \subset LtC(X_n) \subset LsC(X_n) \subset C(X_0)$. Let $A \in C(X_0), a \in A$, and let $\varepsilon > 0$. Since $X_n \to X_0$ is w-regular,
W-regular convergence of R^i-continua

there exist δ-neighborhood V of a and a positive integer N such that $V \cap X_n \neq \emptyset$ and a point $y \in V \cap X_n$ having an element $B \in T(y, X_n) \subset C(X_n)$ with $H(A, B) < \varepsilon$ for all $n > N$. Thus $A \in \text{LiC}(X_n)$ and hence $C(X_0) \subset \text{LiC}(X_n)$. Therefore we have $C(X_0) = \text{Ltc}(X_n)$.

Theorem 2.10. The sequence $\{X_n\}_{n=1}^{\infty}$ of subcontinua of a metric continuum X converges to X_0 w-regularly if and only if the sequence $\{C(X_n)\}_{n=1}^{\infty}$ converges to $C(X_0)$.

Proof. Suppose $X_n \to X_0$ is w-regular. It suffices to show that $C(X_0) \subset \text{LiC}(x_n)$. Let $A \in C(X_0)$, and $\varepsilon > 0$ be given. Let $a \in A$. The w-regular convergence implies that there is $\delta > 0$ and N such that the δ-neighborhood V of a intersects X_n for all $n > N$ and there is a point $a_n \in X_n$ having an element $A_n \in T(a_n, X_n)$ such that $H(A, A_n) < \varepsilon$ for each $n \geq N$. Thus $A \in \text{LiC}(x_n)$. Hence we have $\text{Ltc}(X_n) = C(X_0)$.

Now suppose $\text{Ltc}(X_n) = C(X_0)$. Let $\varepsilon > 0$ and $A \in T(a, X_0)$. Let $\{A_n\}_{n=1}^{\infty}$, $A_n \in C(X_n)$, be a sequence which converges to A. Let N be an integer such that $H(A, A_n) < \varepsilon$ for all $n \geq N$. Let $\delta = \varepsilon$, and let V be the δ-neighborhood of a. Then $V \cap A_n \neq \emptyset$ for all $n \geq N$. So we pick a point $a_n \in A_n$ for each $n \geq N$. Then these satisfy w-regular convergence condition.

3. R^i-continua in $C(X)$

In [1], it was proven that if a metric space X contains a proper subset A which is homotopically fixed, then X is not contractible. Subsequently Czuba [4] proved that any R^i-continua of a dendroid is homotopically fixed. But it can be verified that it holds for all metric continua. In [2], there were some attempts to generalize R^i-continua of dendroids for metric continua X [2, Proposition 1] and extending them to hyperspaces $C(X)$ [2, Theorem 6, Corollary 7, and Corollary 17]. (The statement of Corollary 17 remains true by [8]).

In this section, we will remedy the attempts for a subclass of metric continua.

The following definition was originally given for the class of dendroid.
Definition 3.1 [3]. Let X be a metric continuum. A nonempty proper subcontinuum K of X is called

1. an R^1-continuum if there exists an open set U such that $K \subset U$ and two sequences $\{C_n^1\}_{n=1}^{\infty}$ of components of U such that $K = LsC_n^1 \cap LsC_n^2$;
2. an R^2-continuum if there exist an open set U containing K and two sequences $\{C_n^1\}_{n=1}^{\infty}$, $\{C_n^2\}_{n=1}^{\infty}$ of components of U such that $K = LtC_n^1 \cap LtC_n^2$;
3. an R^3-continuum if there exists an open set U containing K and a sequence $\{C_n\}_{n=1}^{\infty}$ of components of U such that $K = LiC_n$.

In sequel, we denote R^1-continuum, R^2-continuum, and R^3-continuum by $LsC_n^1 \cap LsC_n^2 \subset U$, $LtC_n^1 \cap LtC_n^2 \subset U$, and $LiC_n \subset U$, respectively, as the open set U and the components are given in the definition.

Now Czuba’s Proposition 5 and a part of Corollary 11 in [3] can be stated for metric continua but his Proposition 10 in [3] can not be generalized for metric continua (see Example C below).

Proposition 3.2 [3].

(a) Each R^2-continuum of a metric continuum X is both R^1 and R^3-continuum.

(b) If R^1-continuum of a metric continuum X is a single point, then it is both R^2 and R^3-continuum.

Proof.

(a) In fact, if $K = LtC_n^1 \subset U$, then $LsC_n^i = LtC_n^i$ for each $i = 1, 2$, so that K is an R^1-continuum. Now define a new sequence $\{D_n\}_{n=1}^{\infty}$ by letting $D_{2n} = C_n^1$ and $D_{2n+1} = C_n^2$. Then it is easy to check that $K = LiD_n \subset U$.

(b) Suppose $K = \{x\} = LsC_n^1 \cap LsC_n^2 \subset U$. For each $i = 1, 2$, choose a convergent subsequence $\{C_{n_k}^i\}_{k=1}^{\infty}$ of $\{C_n^i\}_{n=1}^{\infty}$ whose limit contains x. Then $LtC_{n_k}^i \subset LsC_n^i$ for each $i = 1, 2$, implies that $LtC_{n_k}^1 \cap LtC_{n_k}^2$. The proof that $K = \{x\}$ is an R^3-continuum is the same as in (a).
W-regular convergence of R^i-continua

Theorem 3.3. Let $K = LtC^1_n \cap LtC^2_n \subset U$ be an R^2-continuum of a metric continuum X such that the convergence of each sequences $\{C^i_n\}_{n=1}^{\infty}$, $i = 1, 2$, is w-regular. Then $C(K)$ is a R^2-continuum in $C(X)$.

Proof. Since $C(U)$ is open in $C(X)$ and each $C(C^i_n)$ is a component of $C(U)$, we let $\mathcal{K} = LtC(C^1_n) \cap LtC(C^2_n)$. Let $K_i = LtC^i_n$ for each $i = 1, 2$. Then $K* \subset \mathcal{K}$ so that $\mathcal{K} \neq \emptyset$.

Since the convergence is w-regular, we have $C(K_i) = LtC(C^i_n)$ for each i by Theorem 2.9. Let $A \in \mathcal{K}$. Then $A \subset C(K_1) \cap C(K_2)$ so that $A \in C(K)$. On the other hand, suppose $A \in C(K)$. Then $A \subset K_1 \cap K_2$ so that $A \in C(K_1) \cap C(K_2)$. This shows that $C(K) = \mathcal{K}$. Since $C(K)$ is connected, it is an R^2-continuum.

Theorem 3.4. $K = LsC^1_n \cap LsC^2_n \subset U$ be an R^1-continuum of a metric continuum X having the property that each converging subsequence of $\{C^i_n\}_{n=1}^{\infty}$, $i = 1, 2$, converges w-regularly. Then $\mathcal{K} = LsC(C^1_n) \cap LsC(C^2_n)$ is an R^1-continuum of $C(X)$.

Proof. Since the continuum $K*$ is contained in \mathcal{K}, \mathcal{K} is nonempty and compact. We show that \mathcal{K} is connected. Let $A \in \mathcal{K}$. Then, for each $i = 1, 2$, there is a sequence $\{A^i_{n_k}\}_{k=1}^{\infty}$, $A^i_{n_k} \in C(C^i_{n_k})$, such that $A^i_{n_k} \to A$. Then $A \subset LiC^i_{n_k}$ for each $i = 1, 2$. Let $D^i_j \supseteq \{D^i_{n_k}\}_{j=1}^{\infty}$ be convergent subsequence of $\{C^i_{n_k}\}_{k=1}^{\infty}$ for each $i = 1, 2$. Then $A \subset LiD^i_j = LsD^i_j$ for each $i = 1, 2$. Since the convergence is w-regular, $C(A) \subset LtC(D^1_j) \cap LtC(D^2_j) \subset LsC(C^1_n) \cap LsC(C^2_n)$. Thus the connected set $K* \cup C(A)$ is contained in \mathcal{K}. Therefore, \mathcal{K} is connected and hence is an R^1-continuum of $C(X)$.

Remark. In Theorem 3.4, we can not say that $\mathcal{K} = C(K)$. In fact, most likely $K \notin \mathcal{K}$ (see [3, Example 4] or Example C below).

Theorem 3.5. Let $K = LiC_n \subset U$ be an R^3-continuum of a metric continuum X with the property that each converging subsequence of $\{C_n\}_{n=1}^{\infty}$ converges w-regularly. Then $\mathcal{K} = LiC(C_n)$ is an R^3-continuum of $C(X)$.

Proof. Let $\mathcal{K} = LiC(C_n)$. Clearly $K* = \{x \in X\} \subset \mathcal{K}$. Let $A \in \mathcal{K}$ and let $\{A_n\}_{n=1}^{\infty}$, $A_n \in C(C_n)$, be a sequence which converges to A. Then clearly $A \in C(K)$. We show first that $C(A) \subset LsC(C_{n_k})$
for each subsequence \(\{C(C_{n_k})\}_{k=1}^{\infty} \) of \(\{C(C_n)\}_{n=1}^{\infty} \). So let \(\{C_{n_k}\}_{k=1}^{\infty} \) be any subsequence of \(\{C_n\}_{n=1}^{\infty} \). Since \(K \subset LsC_{n_k} \), we have \(A \subset LsC_{n_k} \). Let \(\{D_j\}_{j=1}^{\infty} \) be an convergent subsequence of \(\{C_{n_k}\}_{k=1}^{\infty} \). Then \(A \subset LtD_j \). Since the convergence is \(w \)-regular by our assumption, we have \(A \subset C(LtD_j) = LtC(D_j) \). Now \(C(A) \subset C(LtD_j) \) and \(LtC(D_j) \subset LsC(C_{n_k}) \). Hence \(C(A) \subset LsC(C_{n_k}) \) for every subsequence \(\{C_{n_k}\}_{k=1}^{\infty} \). Therefore, \(C(A) \subset K \) by [5].

Since \(K^* \cup C(A) \) is connected and contained in \(K \) for each \(A \in K \), \(K \) is connected. This proves that \(K \) is an \(R^3 \)-continuum.

EXAMPLE C (W.J. Charatonik). We give an example of an \(R^1 \)-continuum of a metric continuum \(X \) which contains neither \(R^2 \)-continuum nor \(R^3 \)-continuum. This is a modified version of the example recently given by W.J. Charatonik to one of the authors.

We construct the example in \(E^3 \). If \(p,q \in E^3 \), the straight line segment between \(p \) and \(q \) is denoted by \(pq \). Let \(a = (2,0,0) \), \(q_0 = (1,1,0) \), \(r_0 = (-1,1,0) \), \(s_0 = (-1,-1,0) \) and \(t_0 = (1,-1,0) \). For each positive integer \(n \), let \(p_n^+ = (\frac{n+2}{n+1}, \frac{1}{n+1}, 0) \), \(p_n^- = (\frac{n+2}{n+1}, \frac{-1}{n+1}, 0) \), \(q_n^+ = (\frac{n+2}{n+1}, \frac{n+2}{n+1}, 0) \), \(q_n^- = (\frac{n}{n+1}, \frac{n+2}{n+1}, 0) \), \(r_n^+ = (\frac{-n(n+2)}{n+1}, \frac{n+2}{n+1}, 0) \), \(r_n^- = (\frac{-n(n+2)}{n+1}, \frac{n}{n+1}, 0) \), \(s_n^+ = (\frac{-n(n+2)}{n+1}, \frac{-n(n+2)}{n+1}, 0) \), \(s_n^- = (\frac{-n(n+2)}{n+1}, \frac{-n}{n+1}, 0) \), \(t_n^+ = (\frac{n+2}{n+1}, \frac{-n(n+2)}{n+1}, 0) \), \(t_n^- = (\frac{n+2}{n+1}, \frac{-n}{n+1}, 0) \).

Let \(S_0 = q_0r_0 \cup s_0t_0 \cup t_0q_0 \), and \(S_1 = S_0 \cup r_0s_0 \). For each positive integer \(n \), considering an ordering in \(F_n = \{a, p_n^+, q_n^+, r_n^+, t_n^+, s_n^+, s_n^-, t_n^-, p_n^-, a\} \). Let \(D_n \) be the union of all line segments between two consecutive elements as listed in \(F_n \). Let \(H_0 = \cup_{n=1}^{\infty} D_n \), and let \(X_0 = S_0 \cup H_0 \). Let \(f : E^3 \rightarrow E^3 \) be the rotation about the line \(x = y = 0 \) by the angle \(\frac{\pi}{2} \). Let \(X_i = f^i(X_0) \), \((f^0 = \text{identity}, f^2 = \text{the composition of} f \text{ and } f, \text{ etc.)}, \) for \(i = 0,1,2,3 \). Let raise \(X_i \) straight upward to the \(z = i \) plane for \(i = 1,2,3 \), so that the resulting continua \(\hat{X_i}, i = 1,2,3 \), together with \(X_0 = \hat{X}_0 \) are pairwise disjoint.

We now wish to identify only those segments of \(f^i(S_0), i = 1,2,3 \), in the \(z = i \) plane to the those of \(S_1 \) so that \(f^i(H_0) \) are pairwise disjoint. The identifying relation \(\sim \) is defined as follows; let \(x \in r_0q_0 \), \(y \in f(q_0)f(t_0) \), and \(z \in f^2(t_0)f^2(s_0) \). Then the three points \(x, y, \) and \(z \) are identified as one point if and only if their first and second coordinates are the same. For each of other three triplets of segments,
W-regular convergence of R^i-continua

$\{q_0t_0, f(t_0)f(s_0), f^2(r_0)f^3(q_0)\}, \{s_0t_0, f^2(q_0)f^i(r_0), f^3(t_0)f^3(q_0)\}$, and $\{f(q_0)f(r_0), f^2(t_0)f^2(q_0), f^3(s_0)f^3(t_0)\}$, we identify in the same way. Now let $X = (S_0 \cup X_0 \cup \bigcup_{i=1}^3 \tilde{X}_i) / \sim$ be the quotient space. Then the only R^i-continuum in X is S_1 (which is homeomorphic to the unit circle). Furthermore, S_1 is an R^1-continuum of X which contains neither R^2-continuum nor R^3-continuum.

Example D. Let X be the space in Example C and let Y be the space in the Example 4 in [3]. Let $Z = (X \cup Y)/\{a, x\}$ be the quotient space, where a is the point in X and x is a point in Y at which Y is locally connected. Then Z contains the circle S_1 so that Z is not a dendroid. Also Z contains S_1 as an R^1-continuum, the segment ee' in Y as an R^2-continuum, and the singleton subset $\{q\}$ of Y as an R^3-continuum.

References

Department of Mathematics, Wayne State University, Detroit, MI 48202, U.S.A.

Department of Mathematics, Chonbuk National University, Chonju, Chonbuk 560-756, Korea

Department of Mathematics, Chunju University, Chonju, Chonbuk 560-759, Korea