DIRECT SUM, SEPARATING SET AND SYSTEMS OF SIMULTANEOUS EQUATIONS IN THE PREDUAL OF AN OPERATOR ALGEBRA

MI YOUNG LEE AND SANG HUN LEE

I. Introduction

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $I_{\mathcal{H}}$ and is closed in the ultraweak topology on $\mathcal{L}(\mathcal{H})$. Note that the ultraweak operator topology coincides with the weak* topology on $\mathcal{L}(\mathcal{H})$ (see [3]). Bercovici-Foiaş-Pearcy [3] studied the problem of solving systems of simultaneous equations in the predual of a dual algebra. The theory of dual algebras has been applied to the topics of invariant subspaces, dilation theory and reflexivity (see [1],[2],[3],[5],[6]), and is deeply related with properties $(\mathbf{A}_{m,n})$. Jung-Lee-Lee [7] introduced n-separating sets for subalgebras and proved the relationship between n-separating sets and properties $(\mathbf{A}_{m,n})$. In this paper we will study the relationship between direct sum and properties $(\mathbf{A}_{m,n})$. In particular, using some results of [7] we obtain relationship between n-separating sets and direct sum of von Neumann algebras.

The notation and terminology employed herein agree with those in [3]. The class $C_1(\mathcal{H})$ is the Banach space of trace-class operators on \mathcal{H} equipped with the trace norm. The weak* subspace $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ can be identified with the dual space of $\mathcal{Q}_{\mathcal{A}} = C_1(\mathcal{H})/^{\perp}\mathcal{A}$, where $^{\perp}\mathcal{A}$ is the pre-annihilator in $C_1(\mathcal{H})$ of \mathcal{A} , under the pairing

$$\langle T, [L]_{\mathcal{A}} \rangle = tr(TL), \quad T \in \mathcal{A}, \quad [L]_{\mathcal{A}} \in \mathcal{Q}_{\mathcal{A}}.$$

Received March 26, 1993.

This paper was partially supported by TGRC-KOSEF and the Basic Science Research Institute Programs, Ministry of Education, 1992.

We write [L] for $[L]_{\mathcal{A}}$ when there is no possibility of confusion. If x and y are vectors in \mathcal{H} , we define a rank one operator $x \otimes y$ by $(x \otimes y)u = (u, y)x$ for all u in \mathcal{H} . Throughout this paper, let N be the set of natural numbers.

DEFINITION 1. Suppose that m and n are cardinal numbers such that $1 \leq m, n \leq \aleph_0$. A dual algebra $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ will be said to have property $(\mathbf{A}_{m,n})$ if every $m \times n$ system of simultaneous equations of the form

$$[x_i \otimes y_j] = [L_{ij}], \quad 0 \le i < m, \quad 0 \le j < n,$$

where $\{[L_{ij}]\}_{\substack{0 \le i \le m \\ 0 \le j \le n}}$ is an arbitrary $m \times n$ array from $\mathcal{Q}_{\mathcal{A}}$, has a solution $\{x_i\}_{0 \le i \le m}$, $\{y_j\}_{0 \le j \le n}$ consisting of a pair of sequences of vectors from \mathcal{H} . For the brevity of notation, we shall denote $(\mathbf{A}_{n,n})$ by (\mathbf{A}_n) .

Suppose that $n \in \mathbb{N}$. Let \mathcal{H}_i be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{A}_i \subset \mathcal{L}(\mathcal{H}_i)$ be a dual algebra, $1 \leq i \leq n$. Then we denote the direct sum of dual algebras \mathcal{A}_i , $1 \leq i \leq n$ by

$$\bigoplus_{i=1}^{n} \mathcal{A}_i = \{ \bigoplus_{i=1}^{n} T_i \in \mathcal{L}(\bigoplus_{i=1}^{n} \mathcal{H}_i) | T_i \in \mathcal{A}_i, 1 \le i \le n \}.$$

LEMMA 2. Suppose that $n \in \mathbb{N}$. Let \mathcal{H}_i be a separable, infinite dimensional, complex Hilbert space. Suppose that $\mathcal{A}_i \subset \mathcal{L}(\mathcal{H}_i)$ is a dual algebra, $1 \leq i \leq n$, with its predual $\mathcal{Q}_{\mathcal{A}_i}$. Then $\bigoplus_{i=1}^n \mathcal{A}_i \subset \mathcal{L}(\bigoplus_{i=1}^n \mathcal{H}_i)$ is a dual algebra with its predual $\bigoplus_{i=1}^n \mathcal{Q}_{\mathcal{A}_i}$ under duality

$$< \bigoplus_{i=1}^{n} T_{i}, \bigoplus_{i=1}^{n} [L_{i}]_{\mathcal{A}_{i}} > = \sum_{i=1}^{n} < T_{i}, [L_{i}] >$$

and the norm on $\bigoplus_{i=1}^n \mathcal{Q}_{\mathcal{A}_i}$ is the norm that accrues to it as a linear manifold in $(\bigoplus_{i=1}^n \mathcal{A}_i)^*$. In particular, $[(\bigoplus_{i=1}^n x_i) \otimes (\bigoplus_{i=1}^n y_i)]$ can be identified with $\bigoplus_{i=1}^n [x_i \otimes y_i]_{\mathcal{A}_i}$.

Proof. It is easy to show that $\bigoplus_{i=1}^{n} A_i$ is a dual algebra of $\mathcal{L}(\bigoplus_{i=1}^{n} \mathcal{H}_i)$. Now, consider the direct sum

$$\bigoplus_{i=1}^n \mathcal{Q}_{\mathcal{A}_i} = \{ \bigoplus_{i=1}^n [L_i]_{\mathcal{A}_i} | [L_i]_{\mathcal{A}_i} \in \mathcal{Q}_{\mathcal{A}_i} \}$$

of Banach spaces Q_{A_i} , $1 \le i \le n$, with the usual direct sum norm.

Direct sum, separating set and systems

For $\bigoplus_{i=1}^n T_i \in \bigoplus_{i=1}^n \mathcal{A}_i$ and $\bigoplus_{i=1}^n [L_i]_{\mathcal{A}_i} \in \bigoplus_{i=1}^n \mathcal{Q}_{\mathcal{A}_i}$, we define

$$< \bigoplus_{i=1}^{n} T_{i}, \bigoplus_{i=1}^{n} [L_{i}]_{\mathcal{A}_{i}} > = \sum_{i=1}^{n} < T_{i}, [L_{i}]_{\mathcal{A}_{i}} > .$$

Then it is easy to show that $\langle \cdot, \bigoplus_{i=1}^n [L_i]_{\mathcal{A}_i} \rangle$ defines a linear functional on $\bigoplus_{i=1}^n \mathcal{A}_i$, which we may define by $\bigoplus_{i=1}^n [L_i]$. We define $|| \bigoplus_{i=1}^n [L_i]||$ to be the norm of this linear functional. Since $\bigoplus_{i=1}^n [L_i]$ is ultraweakly continuous on $\bigoplus_{i=1}^n \mathcal{A}_i$ by [4, Problem 15.J], $\bigoplus_{i=1}^n [L_i]$ corresponds to an element of the predual $\mathcal{Q}_{\bigoplus_{i=1}^n \mathcal{A}_i}$.

On the other hand, if $[L] \in \mathcal{Q}_{\bigoplus_{i=1}^n \mathcal{A}_i}$, we write

$$L = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix} \in \mathcal{L}(\bigoplus_{i=1}^{n} \mathcal{H}_{i}).$$

Furthermore, since $\bigoplus_{i=1}^n \mathcal{A}_i \in \mathcal{L}(\bigoplus_{i=1}^n \mathcal{H}_i)$, we may define a linear functional on $\bigoplus_{i=1}^n \mathcal{A}_i$ such that

$$< \bigoplus_{i=1}^{n} A_i, [L] > = tr(A_{i_0} L_{i_0 i_0}).$$

Letting i_0 range over the set $\{1, 2, \dots, n\}$, we obtain an element $\bigoplus_{i=1}^{n} [L_i]$ corresponding to [L] and

$$< \bigoplus_{i=1}^{n} A_i, \bigoplus_{i=1}^{n} [L_i] > = \sum_{i=1}^{n} < A_i, [L_i] > .$$

Finally, for any $\bigoplus_{i=1}^n T_i \in \bigoplus_{i=1}^n \mathcal{A}_i$, we have

$$< \bigoplus_{i=1}^{n} T_{i}, [(\bigoplus_{i=1}^{n} x_{i}) \otimes (\bigoplus_{i=1}^{n} y_{i})] > = < \bigoplus_{i=1}^{n} T_{i}, \bigoplus_{i=1}^{n} [x_{i} \otimes y_{i}] > .$$

The proof is complete.

The following lemma comes from Proposition 2.04 of [3].

LEMMA 3. If A is a dual algebra with properties $(A_{m,n})$ for some $1 \leq m, n \leq \aleph_0$ and B is any subalgebra of A, then B has the same property.

The following theorem should be compared with Proposition 1.3 of [1] and Proposition 2.055 of [3].

THEOREM 4. Suppose that m, n are cardinal numbers such that $1 \leq m, n \leq \aleph_0$ and $p \in \mathbb{N}$. Let \mathcal{A}_k be a dual algebra, $1 \leq k \leq p$. Then \mathcal{A}_k has property $(\mathbf{A}_{m,n})$ for any $1 \leq k \leq p$ if and only if $\bigoplus_{k=1}^p \mathcal{A}_k$ has property $(\mathbf{A}_{m,n})$.

Proof. We shall prove this theorem when $1 \leq m, n < \aleph_0$. Let $\bigoplus_{k=1}^p [L_{ij}^{(k)}] \in \bigoplus_{k=1}^p \mathcal{Q}_{\mathcal{A}_k}$. Then there exist sequences $\{x_i^{(k)}\}_{i=1}^m$ and $\{y_j^{(k)}\}_{j=1}^n$ in \mathcal{H}_k such that $[L_{ij}^{(k)}]_{\mathcal{A}_k} = [x_i^{(k)} \otimes y_j^{(k)}]_{\mathcal{A}_k}$ for each $1 \leq k \leq p$. Now let us set

$$\tilde{x}_i = x_i^{(1)} \oplus x_i^{(2)} \oplus \cdots \oplus x_i^{(p)},$$

$$\tilde{y}_j = y_j^{(1)} \oplus y_j^{(2)} \oplus \cdots \oplus y_j^{(p)}.$$

Then it is obvious that $\tilde{x}_i, \tilde{y}_j \in \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \oplus \mathcal{H}_p, 1 \leq i \leq m, 1 \leq j \leq n$. Furthermore, according to Lemma 2 we have

$$\bigoplus_{k=1}^{p} [L_{ij}^{(k)}] = \bigoplus_{k=1}^{p} [x_i^{(k)} \otimes y_j^{(k)}] = [\tilde{x}_i \otimes \tilde{y}_j].$$

Finally, we can solve the required simultaneous systems for the statement when of $n = \aleph_0$ or $m = \aleph_0$ by a similar method with the above.

The converse is obvious by Lemma 3, and the proof is complete.

Now, we consider the countable direct sum of dual algebras, i.e.,

$$\bigoplus_{i=1}^{\infty} \mathcal{A}_i = \{ \bigoplus_{i=1}^{\infty} T_i \in \mathcal{L}(\widetilde{\mathcal{H}}) | T_i \in \mathcal{A}_i, \sup ||T_i|| < \infty \}$$

where $\widetilde{\mathcal{H}} = \{\bigoplus_{i=1}^{\infty} x_i \in \bigoplus_{i=1}^{\infty} \mathcal{H}_i | \sum ||x_i||^2 < \infty \}$. It is obvious that if $\bigoplus_{i=1}^{\infty} \mathcal{A}_i$ has property $(\mathbf{A}_{m,n})$ for $1 \leq m, n \leq \aleph_0$, then \mathcal{A}_i has property $(\mathbf{A}_{m,n})$ for all i.

DEFINITION 5. [7]. Let \mathcal{A} be a subalgebra of $\mathcal{L}(\mathcal{H})$ and let $\{x_i\}_{i=1}^n$ be a linearly independent subset of $\mathcal{H}, n \in \mathbb{N}$. Then $\{x_i\}_{i=1}^n$ is said to be an n-separating set for \mathcal{A} if $\sum_{i=1}^n T_i x_i = 0$ for $T_i \in \mathcal{A}$ implies $T_i = 0, 1 \leq i \leq n$. And we say that \mathcal{A} has an n-separating set $\{x_i\}_{i=1}^n$.

Note that an algebra with an n-separating set has an m-separating set for m < n.

REMARK. Let \mathcal{A}_i be a dual algebra of $\mathcal{L}(\mathcal{H}_i), i=1,2,\cdots$. We claim that $\bigoplus_{i=1}^{\infty} \mathcal{A}_i$ can be considered as a subspace of $\mathcal{L}(\widetilde{\mathcal{H}})$ under the weak* topology on $\mathcal{L}(\widetilde{\mathcal{H}})$. To do so, let $\bigoplus_{i=1}^{\infty} T_i^{(\alpha)}$ be a net converging to an operator $R \in \mathcal{L}(\widetilde{\mathcal{H}})$ under the weak* topology on $\mathcal{L}(\widetilde{\mathcal{H}})$. Then

$$\sum_{k=1}^{\infty} (\bigoplus_{i=1}^{\infty} T_i^{(\alpha)} \tilde{x}^{(k)}, \tilde{y}^{(k)}) \to \sum_{k=1}^{\infty} (\bigoplus_{i=1}^{\infty} R \tilde{x}^{(k)}, \tilde{y}^{(k)})$$
 (*)

for any square summable sequences $\{\tilde{x}^{(k)}\}_{k=1}^{\infty}$ and $\{\tilde{y}^{(k)}\}_{k=1}^{\infty}$ in $\widetilde{\mathcal{H}}$. Let us write

$$R = \begin{pmatrix} R_{11} & R_{12} & \cdots \\ R_{21} & R_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

relative to $\widetilde{\mathcal{H}}$. Let us denote

$$\tilde{x}^{(k)} = x_1^{(k)} \oplus x_2^{(k)} \oplus \cdots,$$

$$\tilde{y}^{(k)} = y_1^{(k)} \oplus y_2^{(k)} \oplus \cdots$$

Now we take square summable sequence $\{x_i^{(k)}\}_{k=1}^{\infty}$ in \mathcal{H}_i and $\{y_j^{(k)}\}_{k=1}^{\infty}$ in \mathcal{H}_j , $i, j = 1, 2, \cdots$. Let us set

$$\tilde{x}_i^{(k)} = \overbrace{0 \oplus \cdots \oplus 0}^{(i-1)} \oplus x_i^{(k)} \oplus 0 \oplus \cdots,$$

$$\tilde{y}_{i}^{(k)} = \overbrace{0 \oplus \cdots \oplus 0}^{(j-1)} \oplus y_{i}^{(k)} \oplus 0 \oplus \cdots$$

Substituting $\{\tilde{x}_i^{(k)}\}_{k=1}^{\infty}$ and $\{\tilde{y}_j^{(k)}\}_{k=1}^{\infty}$ in (*), we have

$$\sum_{k=1}^{\infty} ((\bigoplus_{l=1}^{\infty} T_l^{(\alpha)}) \tilde{x}_i^{(k)}, \tilde{y}_j^{(k)}) \to \sum_{k=1}^{\infty} (R_{1i} x_i^{(k)} \oplus R_{2i} x_i^{(k)} \oplus \cdots, \tilde{y}_j^{(k)}),$$

for any $i, j = 1, 2, \cdots$. It is easy to show that

$$R_{ii} = 0, j \neq i$$
.

Hence $R = \bigoplus_{i=1}^{\infty} R_{ii}$. Furthermore, we have that

$$\sum_{k=1}^{\infty} (T_i^{(\alpha)} x_i^{(k)}, y_i^{(k)}) \to \sum_{k=1}^{\infty} (R_{ii} x_i^{(k)}, y_i^{(k)})$$

for any $i = 1, 2, \dots$. Since \mathcal{A}_i is weak* closed, $R_{ii} \in \mathcal{A}_i$. So $R \in \bigoplus_{i=1}^{\infty} \mathcal{A}_i$. Therefore $\bigoplus_{i=1}^{\infty} \mathcal{A}_i$ is a dual algebra in $\mathcal{L}(\widetilde{\mathcal{H}})$.

THEOREM 6. Suppose that $A_i \subset \mathcal{L}(\mathcal{H}_i)$ is a dual algebra with a k_i -separating set in \mathcal{H}_i for $k_i \in \mathbb{N}, i = 1, 2, \cdots$. Let $m = \min\{k_i\}$. Then the dual algebra $\bigoplus_{i=1}^{\infty} A_i$ has an m-separating set in $\widetilde{\mathcal{H}}$.

Proof. For each i, let $\{x_k^{(i)}\}_{k=1}^{k_i}$ be a k_i -separating set for \mathcal{A}_i in \mathcal{H}_i . Consider a positive real number

$$M_{k,i} = \frac{1}{2^{i}(1+||x_{k}^{(i)}||)}$$

for $1 \leq k \leq m, i = 1, 2, \cdots$. Let $\tilde{x}_j = \bigoplus_{i=1}^{\infty} M_{j,i} x_j^{(i)}, 1 \leq i \leq m$. Then $\tilde{x}_j \in \mathcal{H}$. An easy calculation shows that $\{\tilde{x}_1, \tilde{x}_2, \cdots, \tilde{x}_m\}$ is linearly independent.

Suppose that $\sum_{k=1}^{m} (\bigoplus_{i=1}^{\infty} T_i^{(k)}) \tilde{x}_k = 0$ for any $\bigoplus_{i=1}^{\infty} T_i^{(k)} \in \bigoplus_{i=1}^{\infty} \mathcal{A}_i$, $1 \le k \le m$. Since

$$\sum_{k=1}^{m} (\bigoplus_{i=1}^{\infty} T_i^{(k)}) \tilde{x}_k = \sum_{k=1}^{m} (\bigoplus_{i=1}^{\infty} T_i^{(k)}) (\bigoplus_{i=1}^{\infty} M_{k,j} x_k^{(j)})$$

$$= \sum_{k=1}^{m} \bigoplus_{i=1}^{\infty} T_i^{(k)} (M_{k,i} x_k^{(i)})$$

$$= \bigoplus_{i=1}^{\infty} \sum_{k=1}^{m} T_i^{(k)} (M_{k,i} x_k^{(i)}),$$

Direct sum, separating set and systems

we have $\sum_{k=1}^{m} M_{k,i} T_{I}^{(k)} x_{k}^{(i)} = 0, i = 1, 2, \cdots$. Since $\{x_{k}^{(i)}\}_{k=1}^{k_{i}}$ is an m-separating set for $\mathcal{A}_{i}, M_{k,i} T_{i}^{(k)} = 0, 1 \leq k \leq m$. Thus $T_{i}^{(k)} = 0, 1 \leq k \leq m$. Hence $\{\tilde{x}_{1}, \tilde{x}_{2}, \cdots, \tilde{x}_{m}\}$ is an m-separating set for $\bigoplus_{i=1}^{\infty} \mathcal{A}_{i}$.

REMARK. The condition of minimality of k_i in appearing in Theorem 6 is essential (for example, consider algebras generated by T_1, T_2 , and $T_1 \oplus T_2$, where $T_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, T_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$).

The following is an immediate corollary of Theorem 6.

COROLLARY 7. The dual algebra A_i has an n-separating set in \mathcal{H}_i , if and only if the dual algebra $\bigoplus_{i=1}^{\infty} A_i$ has an n-separating set in $\widetilde{\mathcal{H}}$.

The following lemma plays a central role for one of the main results in this paper.

LEMMA 8. [7],[8]. Suppose that n is a cardinal number such that $1 \leq n \leq \aleph_0$. Let $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ be a von Neumann algebra and let $n \in \mathbb{N}$. Then the following are equivalent:

- (1) \mathcal{A} has property (\mathbf{A}_n) .
- (2) A has an n-separating set.
- (3) \mathcal{A} has property $(\mathbf{A}_{n,\aleph_0})$.

Finally, we consider some necessary and sufficient conditions for the direct sum of von Neumann algebras with property $(\mathbf{A}_{m,n})$.

THEOREM 9. Suppose that A_i is a von Neumann algebra for $i = 1, 2, \cdots$. Then the following are equivalent:

- (1) A_i has an n-separating set for all $i = 1, 2, \cdots$.
- (2) $\oplus A_i$ has an n-separating set.
- (3) $\oplus A_i$ has property $(\mathbf{A}_{n,\aleph_0})$.
- (4) A_i has property $(\mathbf{A}_{n,\aleph_0})$ for all $i=1,2,\cdots$.
- (5) A_i has property (A_n) for all $i = 1, 2, \cdots$.
- (6) $\oplus A_i$ has property (A_n) .

Proof. The proof is clearly by Corollary 7 and Lemma 8.

Mi Young Lee and Sang Hun Lee

ACKNOWLEDGEMENT. The authors to express their sincere thanks to Professor Il Bong Jung at Kyungpook National University for the idea of Lemma 2.

References

- C. Apostol, H. Bercovici, C. Foiaş and C. Pearcy, Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I, J. Funct. Anal. 63 (1985), 369-404.
- H. Bercovici, C. Foiaş and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I, Michigan Math. J. 30 (1983), 335-354.
- 3. H. Bercovici, C. Foiaş and C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, CBMS Regional Conference Series, no.56, Amer. Math. Soc. Providence, R.I. (1985).
- 4. A. Brown and C. Pearcy, Introduction to operator theory, I. Elements of functional analysis, Springer-Verlag, New York (1977).
- C. Garciadiego and S. Esteva, On dual algebras and algebraic operators, Boletín de la Sociedad Matemática Mexicana, 32 (1987), 1-5.
- 6. I. Jung, Dual operator algebras and the classes $A_{m,n}$. I, J. Operator Theory, to appear.
- 7. I.B. Jung, M. Y. Lee and S. H. Lee, Separating sets and systems of simultaneous equations in the predual of an operator algebra, submitted.
- 8. M. Marsalli, Systems of equations in the predual of a von Neumann algebra, Proc. Amer. Math. Soc. 111 (1991), 517-522.

DEPARTMENT OF MATHEMATICS, COLLEGE OF NATURAL SCIENCE, KYUNGPOOK NATURAL UNIVERSITY, TAEGU 702-701, KOREA