UNSOLVABLE PDO'S OF DEGENERATE TYPE

RAKJOONG KIM AND JONGSIK KIM

1. Introduction

Let A be a linear partial differential operator with C^{∞} coefficients in an open set U in \mathbb{R}^n . Hörmander has then proved that a necessary condition for local solvability at x_0 is the following:

There exist constants C, k and N such that

$$\left| \int f v \, dx \right| \le C \sum_{|\alpha \le k} \sup |D^{\alpha} f| \sum_{|\beta| \le N} \sup |D^{\beta} A^* v|, \tag{1.1}$$

where $f, v \in C_0^{\infty}(U), U$ is an open set containing the origin.

Here A^* denotes the adjoint of A. Kannai[2] proved that in $R_{t,x}^2$, $D_t + itD_x^2$ is hypoelliptic but not locally solvable on the line x = 0. We consider a real valued C^{∞} function a(t) such that a(t) = t + o(t) as $t \to 0$. The purpose of our paper is to show that a partial differential operator

$$\mathcal{A} \equiv D_t + ia(t)D_x^2 \tag{1.2}$$

is still unsolvable on the line x=0, even though we replace t with t + higher order terms. In view of (1.1) it suffices to show that for any open set U containing the origin there exist functions f_{λ}, v_{λ} , depending on a real parameter λ and belonging to $C_0^{\infty}(U)$ such that

Received March 29, 1993.

Solvability, Unsolvability, Partial differential operator of degenerate type,

Partially supported by the GARC-KOSEF.

$$\lim_{\lambda \to \infty} \left| \int \int f_{\lambda} v_{\lambda} \, dt dx \right| = \infty, \tag{1.3}$$

$$\lim \sup_{\lambda \to \infty} \sum_{k_1 + k_2 < k} \sup \left| D_t^{k_1} D_x^{k_2} f_{\lambda} \right| < \infty \quad \text{for every } k, \tag{1.4}$$

$$\lim \sup_{\lambda \to \infty} \sum_{l_1 + l_2 \le l} \sup \left| D_t^{l_1} D_x^{l_2} \mathcal{A}^* v_{\lambda} \right| < \infty \quad \text{for every } N,$$
(1.5)

2. Main results

Now we state the following:

THEOREM. The partial differential operator A is not locally solvable on the line x = 0.

Proof. Let $b(t) = \int_0^t a(y) dy$. As in [2] we choose a density function $u_{\lambda}(t,x)$ of the following form

$$u_{\lambda}(t,x) = \frac{1}{\sqrt{2b\lambda + 1}} \exp\left[\frac{-2b\lambda^2 - x^2\lambda + 2ix\lambda}{2(2b\lambda + 1)}\right]. \tag{2.1}$$

as a solution of $\mathcal{A}^*u=0$. It is enough to show that our operator is not locally solvable at the origin. Let U be an open set containing the origin and $\delta>0$ a fixed number such that $\{(t,x)|\sqrt{t^2+x^2}<\delta\}\subset U$. We may assume that $2\delta<1$. From conditions for a(t),b(t) it follows that there exists a constant c>0 such that

$$b(t) = ct^2 + o(t^2), \qquad t \to 0.$$

Thus it is obvious that there exists a constant c'>0 such that $b(t)\geq c't^2$ for t near 0. Without loss of generality we may assume that c'=1. Then we obtain for λ large enough

$$\frac{2b\lambda^2 + x^2\lambda}{2(2b\lambda + 1)} \ge \frac{\delta^2\lambda}{2} \tag{2.2}$$

if $\delta \leq |t| \leq 2\delta$ or $\delta \leq |x| \leq 2\delta$. It is clear that for each $k = (k_1, k_2)$

$$D_t^{k_1} D_x^{k_2} u_{\lambda}(t, x) \tag{2.3}$$

$$=G_k(t,x,\lambda,\sqrt{2b\lambda+1})\exp\left[\frac{-2b\lambda^2-x^2\lambda+2ix\lambda}{2(2b\lambda+1)}\right]$$

where G_k is a regular function of its arguments because $2b\lambda + 1 > 0$. We consider a function in $C_0^{\infty}(\mathbb{R}^2)$ such that

$$\phi(t, x) = \begin{cases} 1 & \text{if } & \sqrt{t^2 + x^2} \le 1 \\ 0 & \text{if } & \sqrt{t^2 + x^2} > 2. \end{cases}$$

It follows that there exist constants C_1, C_2 depending on $l = (l_1, l_2)$ such that

$$\left| D_t^{l_1} D_x^{l_2} \mathcal{A}^* \left[\phi(\frac{t}{\delta}, \frac{x}{\delta}) u_{\lambda}(t, x) \right] \right| \le C_1 \delta^{-(l_1 + l_2 + 2)} \lambda^{C_2} exp \left[-\frac{\delta^2 \lambda}{2} \right] \quad (2.4)$$

We take a function $F(t,x) \in C_0^{\infty}(U)$ such that

$$\int \int F(t,x) \, dt dx = a \neq 0.$$

It follows that

$$\lambda^2 b(\frac{t}{\lambda^2}) \to 0$$
 as $\lambda \to \infty$.

Thus we obtain

$$\lambda^{4} \lim_{\lambda \to \infty} \int \int F(\lambda^{2}t, \lambda^{2}x) \phi(\frac{t}{\delta}, \frac{x}{\delta}) u_{\lambda}(t, x) dt dx$$
$$= \int \int F(t, x) \phi(0, 0) dt dx = a.$$

For each fixed k, N we take

$$f_{\lambda}(t,x) = \lambda^{-2k-1} F(\lambda t, \lambda x)$$

$$v_{\lambda}(t,x) = \lambda^{2k+6} \phi(\frac{t}{\delta}, \frac{x}{\delta}) u_{\lambda}(t,x).$$
(2.5)

Moreover it is obvious that

$$\sum_{k_1 + k_2 \le k} \sup |D_t^{k_1} D_x^{k_2} f_{\lambda}(t, x)| \le \lambda^{-1}.$$
 (2.6)

From $(2.2) \sim (2.6)$ our theorem follows.

Rakjoong Kim and Jongsik Kim

COROLLARY. For each positive integer m the partial differential operator

$$\mathcal{B} \equiv D_t + i(t^{2m-1} + o(t^{2m-1}))D_x^2$$

is not locally solvable at the origin.

Proof. We sketch briefly the proof. As seen in the proof of Theorem we choose a density function $u_{\lambda}(t,x)$ of the following form

$$u_{\lambda}(t,x) = \frac{1}{\sqrt{2b\lambda + 1}} \exp\left[\frac{-2b\lambda^2 - x^2\lambda + 2ix\lambda}{2(2b\lambda + 1)}\right].$$

as a solution of $\mathcal{B}^*u = 0$, where $b(t) = \int_0^t a(y) \, dy$. We may assume that $b(t) \geq t^{2m}$ for t near 0.

$$\frac{2b\lambda^2 + x^2\lambda}{2(2b\lambda + 1)} \ge \frac{\delta^{2m}\lambda}{2}$$

if $\delta \leq |t| \leq 2\delta$ or $\delta \leq |x| \leq 2\delta$. It follows then that there exist constants C_1, C_2 such that

$$\left| D_t^{l_1} D_x^{l_2} \mathcal{B}^* \left[\phi(\frac{t}{\delta}, \frac{x}{\delta}) u_{\lambda}(t, x) \right] \right| \leq C_1 \delta^{-(l_1 + l_2 + 2)} \lambda^{C_2} exp \left[-\frac{\delta^{2m} \lambda}{2} \right]$$

We choose a function $F(t,x) \in C_0^{\infty}(U)$ such that

$$\int \int F(t,x)exp[-b(t)+ix] dtdx = a \neq 0.$$

Then we obtain

$$\lim_{\lambda \to \infty} \lambda^{1 + \frac{1}{m}} \int \int F(\lambda^{\frac{1}{m}} t, \lambda x)) \phi(\frac{t}{\delta}, \frac{x}{\delta}) u_{\lambda}(t, x) dt dx = a.$$

For each fixed k, N we take

$$f_{\lambda}(t,x) = \lambda^{-k-1} F(\lambda^{\frac{1}{m}} t, \lambda x)$$

$$v_{\lambda}(t,x) = \lambda^{k+3-\frac{1}{m}} \phi(\frac{t}{\delta}, \frac{x}{\delta}) u_{\lambda}(t,x).$$

EXAMPLE.

$$D_t + i(t + c\sum_{j=2}^{\infty} t^j)D_x^2$$

is not locally solvable at the origin.

REMARK. For an operator

$$D_t + ia(t)b(t)D_x^2$$

we take a density function

$$u_{\lambda}(t,x) = \frac{1}{\sqrt{b(t)^2 \lambda + 1}} \exp \left[\frac{-b(t)^2 \lambda^2 - x^2 \lambda + 2ix\lambda}{2(2b(t)\lambda + 1)} \right].$$

We note that the solution of the partial differential equation

$$\mathcal{A}^* u(t, x) = f(t, x)$$
$$u|_{t=0} = 0,$$

might be represented by its partial Fourier transform:

$$\hat{u}(t,\xi) = i \int_0^t \exp\left[-(b(t) - b(s))\xi^2\right] \hat{f}(s,\xi) ds.$$

This formula makes sense at least for all $f \in C_0^{\infty}(\mathbb{R}^2)$.

References

- L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963.
- Y. Kannai, An Unsolvable Hypoelliptic Differential Operator, Israel J. Math 9 (1971), 306-315.
- 3. C. Nirenberg and F. Treves, On local solvability of linear partial differential equations, Part 1:Necessary conditions, Part 2: Sufficient conditions, Comm. Pure Appl. Math. 23 (1970), 1-38,459-510.

DEPARTMENT OF MATHEMATICS, HALLYM UNIVERSITY, CHUNCHON, KANGWON-DO 200-702, KOREA

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA