ERGODIC PROPERTIES OF COMPACT ACTIONS ON C^*-ALGEBRAS

SUN YOUNG JANG

I. Introduction

Let (A, G, α) be a C^*-dynamical system. In [3] the classical notions of ergodic properties of topological dynamical systems such as topological transitivity, minimality, and uniquely ergodicity are extended and analyzed in the context of non-abelian C^*-dynamical systems. We showed in [2] that if G is a compact group, then minimality, topological transitivity, uniquely ergodicity, and weakly ergodicity of the C^*-dynamical system (A, G, α) are equivalent. But we can give examples which show that the above statement is false if G is not compact. Let M_2^∞ be a Car-algebra, i.e. M_2^∞ is an infinite tensor product $\otimes^\infty M_2$ of full 2×2 matrix algebra M_2. Let α be the shift of M_2^∞ obtained by translating each tensor factor by one to the right. It is clear that $(M_2^\infty, \mathbb{Z}, \alpha)$ is ergodic. Let $p_\infty = \otimes_{-\infty}^\infty p$ where p is the non-trivial projection of M_2. Then p_∞ is the α-invariant closed projection in the second dual $M_2^{\infty''}$ of M_2^∞ because the sequence of projections $p_n = \otimes_{-n}^n p$ in M_2^∞ is decreasing and converges σ-weakly to p_∞. So $(I - p_\infty)M_2^{\infty''} (I - p_\infty) \cap M_2^\infty$ is the non-zero α-invariant hereditary C^*-subalgebra of M_2^∞ because $I - p_\infty$ is the open projection in $M_2^{\infty''}$. So $(M_2^\infty, \mathbb{Z}, \alpha)$ is not minimal. Let p and q be non-zero orthogonal projections in M_2 with $p + q = I$. Then with these projections we can make two α-invariant hereditary C^*-subalgebras B_1 and B_2 of M_2^∞ with $B_1B_2 = 0$. This means that $(M_2^\infty, \mathbb{Z}, \alpha)$ is not topologically transitive. Let (A, G, α) and (A, G, β) be C^*-dynamical systems. It is said that two C^*-dynamical systems (A, G, α) and (A, G, β) are exterior

Received June 12, 1993.
equivalent if there is a function \(t \to u_t \) from \(G \) to the unitary group of the multiplier algebra \(M(A) \) of \(A \) satisfying the conditions;

1. \(u_{st} = u_s \alpha_s(u_t) \),
2. \(\beta_t = Ad_{u_t} \alpha_t \),
3. \(t \to u_t x \) is norm continuous for each \(x \) in \(A \).

A function satisfying condition (1) is called a unitary cocyle. In \(W^* \)-dynamical systems the norm continuity of the condition (3) is replaced with the \(\sigma \)-weak continuity. In this paper we are going to discuss the exterior equivalence of dynamical systems. That is, if two \(C^* \)-dynamical systems (or \(W^* \)-dynamical systems) are exterior equivalent and one of them has some properties, then what happens to the other? In [4], it was known that if two \(C^* \)-dynamical systems (or \(W^* \)-dynamical systems) are exterior equivalent, they have the same Connes' spectrum.

2. Main result

Let \((A, G, \alpha) \) be a \(C^* \)-dynamical system. The \(C^* \)-dynamical system \((A, G, \alpha) \) is \textit{topologically transitive} if for any non-zero \(\alpha \)-invariant hereditary \(C^* \)-subalgebras \(B_1 \) and \(B_2 \) their product \(B_1 B_2 \) is not zero. If \(A \) is the only non-zero \(\alpha \)-invariant hereditary \(C^* \)-subalgebra of \(A \), then \((A, G, \alpha) \) is called \textit{minimal}, [cf. 3]. A triple \((\pi, u, H) \) is a covariant representation of \((A, G, \alpha) \) if \((\pi, H) \) is a representation of \(A \), \((u, H) \) is a unitary representation of \(G \), and

\[
\pi(\alpha_t(x)) = u_t \pi(x) u_t^*
\]

for all \(x \) in \(A \) and \(t \) in \(G \). For \(W^* \)-dynamical systems the useful concepts are of course normal covariant representations.

Lemma 2.1. Let two \(C^* \)-dynamical systems \((A, G, \alpha) \) and \((A, G, \beta) \) be exterior equivalent with a unitary cocyle \(\{u_g | g \in G\} \). If \((\pi, v, H) \) is a non-degenerate covariant representation of \((A, G, \alpha) \), then \((\pi, \pi(u)v, H) \) is a covariant representation of \((A, G, \beta) \).

Proof. Since \(\pi \) is non-degenerate, there is a unique normal homomorphism \(\pi'' \) of the enveloping von Neumann algebra \(A'' \) of \(A \) onto the
Ergodic properties of compact actions on \(C^* \)-algebras

\(\sigma \)-weak closure \(\varpi(A)^{\sigma w} \) of \(\pi(A) \) which extends \(\pi \). Since \(\pi \) is nondegenerate, it is clear that \(g \to \pi(u_g)v_g \) is a unitary representation of \(G \). So we have for each \(\xi \in H \),

\[
\| \pi(u_g)v_g \xi - \xi \| \leq \| \pi(u_g) \| \| v_g \xi - \xi \| + \| \pi(u_g) \xi - \xi \|.
\]

Further more since \(\pi(\beta_g(x)) = \pi(u_g)v_g \pi(x)v_g^* \pi(u_g^*) \) for each \(g \in G \),
\((\pi, \pi(u)v, H) \) is a covariant representation of \((A, G, \beta) \).

Let \((A, G, \alpha) \) be a \(C^* \)-dynamical system and \(\pi \) be a covariant representation of \((A, G, \alpha) \). Then we can consider the \(W^* \)-dynamical system \((\pi(A)'', G, \alpha'') \) on \(\pi(A)'' \) induced by \((A, G, \alpha) \) where \(\alpha''(\pi(x)) = \pi(\alpha(x)) \) for all \(x \in A \).

Proposition 2.2. Let \(C^* \)-dynamical systems \((A, G, \alpha) \) and \((A, G, \beta) \) be exterior equivalent with a unitary cocyle \(\{ u_g \mid g \in G \} \). Let \(\pi \) be a covariant non-degenerate representation of \((A, G, \alpha) \) on a Hilbert space \(H \). Then \(W^* \)-dynamical systems \((\pi(A)'', G, \alpha'') \) and \((\pi(A)'', G, \beta'') \) are also exterior equivalent with respect to the sense of \(W^* \)-dynamical systems.

Proof. We only have to show that the function \(g \to \pi(u_g)x \) from \(G \) into the unitary group of the multiplier algebra \(M(\pi(A)) \) of \(\pi(A) \) is \(\sigma \)-weakly continuous for each \(x \) in \(\pi(A)'' \). For each \(x \in \pi(A)'' \) we can choose a net \(\{ x_\alpha \}_{\alpha \in I} \) such that \(\{ \| x_\alpha \| \}_{\alpha \in I} \) is bounded and \(\{ x_\alpha \} \) converges \(\sigma \)-strongly to \(x \). Let \(\omega \) be a positive normal linear functional on \(\pi(A)'' \). Since \(\| \omega(y^*x) \|^2 \leq \omega(y^*y)\omega(x^*x) \) for all \(x, y \in \pi(A)'' \), we have

\[
|\omega(\pi(u_g)x - x)| \leq (\omega(1)\omega((x - x_\alpha)^*(x - x_\alpha)))^{\frac{1}{2}} \\
+ |\omega(\pi(u_g)x_\alpha - x_\alpha)| + |\omega(x_\alpha - x)|.
\]

Since \(x_\alpha - x \) converges \(\sigma \)-strongly to 0, \((x_\alpha - x)^*(x_\alpha - x) \) converges \(\sigma \)-weakly to 0. Hence we see that \(\pi(u_g)x \) converges \(\sigma \)-weakly to \(x \) for each \(x \in \pi(A)'' \) as \(g \) goes to the identity of \(G \).
LEMMA 2.3. Let \((A, G, \alpha)\) be a \(C^*\)-dynamical system. Let \(p\) and \(q\) be equivalent projections in the fixed point algebra \(M(A)^\alpha\) of the multiplier algebra \(M(A)\). Assume that \((qAq, G, \alpha|_{qAq})\) is topologically transitive. Then \((pAp, G, \alpha|_{pAp})\) is also topologically transitive.

Proof. Suppose that \((pAp, G, \alpha|_{pAp})\) is not topologically transitive. Then there exist non-zero two elements \(x\) and \(y\) in \(pAp\) such that

\[x\alpha_g(y) = 0, \quad g \in G. \]

Since \(p\) and \(q\) are equivalent in \(M(A)^\alpha\), there exists a partial isometry \(v\) in \(M(A)^\alpha\) such that

\[v^*v = p, \quad vv^* = q. \]

Since \(x\) and \(y\) are contained in \(pAp\), we have \(x\alpha_g(y) = pxp\alpha_g(pyp)\). By \(\alpha\)-invariance of \(p\)

\[x\alpha_g(y) = v^*vxv^*v\alpha_g(y)v^*v = 0 \]

for all \(g \in G\). Since \(v\) is fixed by \(\alpha_g\) for all \(g \in G\), we get for all \(g \in G\)

\[0 = v(v^*vxv^*v\alpha_g(y)v^*v)v^* \]

\[= qvxv^*q\alpha_g(qvyv^*q). \]

Put \(x' = qvxv^*q\) and \(y' = qvyv^*q\). Then \(x'\) and \(y'\) are non-zero elements in \(qAq\). From the above calculation, \(x'\alpha_g(y') = 0\) for all \(g \in G\). Therefore \((qAq, G, \alpha|_{qAq})\) is not topologically transitive.

Let \((A, G, \alpha)\) be a \(C^*\)-dynamical system. When \(G\) is a compact group, \(A\) can be represented faithfully and covariantly.

LEMMA 2.4. Let \((A, G, \alpha)\) be a \(C^*\)-dynamical system and \(G\) be a compact group. Let \(A\) be represented faithfully and covariantly. If \((A, G, \alpha)\) is topologically transitive, then the \(W^*\)-dynamical system \((A'', G, \alpha'')\) induced by \((A, G, \alpha)\) is ergodic and the von Neumann algebra \(A''\) is finite.

Proof. Let \((A'', G, \alpha'')\) be the \(W^*\)-dynamical system induced by the \(C^*\)-dynamical system \((A, G, \alpha)\). Let \(P_0\) be the conditional expectation from \(A''\) to the fixed point algebra \(A''^{\alpha''}\) defined by

\[P_0(x) = \int_G \alpha''_g(x) dg \]

292
for all \(x \in A'' \). Since \(P_0 \) is \(\sigma \)-weak continuous and \(A \) is \(\sigma \)-weak dense in \(A'' \), \(P_0(A) = A^\alpha \) is \(\sigma \)-weak dense in \(A'''' \). By Corollary 2.3 in [2] \(A^\alpha \) is of one dimension, so \(A'''' \) is also trivial. Therefore \((A'', G, \alpha'')\) is ergodic and by Corollary 4.2 in [1] \(A'' \) is finite.

Let \(M \) be a finite von Neumann algebra and \(Z(M) \) be its center. The map \(\tau : M \rightarrow Z(M) \) is called a canonical central trace if it satisfies the following conditions:

1. \(\tau \) is linear and bounded,
2. \(\tau(xy) = \tau(yx) \) for any \(x, y \in M \),
3. \(\tau(z) = z \) for any \(z \in Z(M) \).

Let \(M \) be a finite von Neumann algebra and \(\tau \) be the canonical central trace on \(M \). Let \(p \) and \(q \) be projections in \(M \). \(\tau(p) = \tau(q) \) if and only if \(p \) and \(q \) are equivalent [cf 6].

Lemma 2.5. Let \((M, G, \alpha)\) be a \(W^* \)-dynamical system and \(G \) be a compact group. Let \(A \) be the set defined by

\[
A = \{ x \in M \mid x \rightarrow \alpha_g(x) \text{ is norm continuous} \}.
\]

If \((M, G, \alpha)\) is ergodic, the \(C^* \)-dynamical system \((A, G, \alpha|_A)\) is topologically transitive.

Proof. It is known that \(A \) is the \(\alpha \)-invariant \(C^* \)-algebra. Since \(G \) is compact, there exists a \(\sigma \)-weakly continuous expectation \(P_0 \) from \(M \) to the fixed point algebra \(M^\alpha \) as in the proof of Lemma 2.4. Since \(A \) is \(\sigma \)-weak dense in \(M \), \(P_0(A) \) is \(\sigma \)-weak dense in \(M^\alpha \). Therefore \(A^\alpha \) is trivial. By Corollary 2.3 in [2] \((A, G, \alpha|_A)\) is topologically transitive.

Theorem 2.6. Let \(W^* \)-dynamical systems \((M, G, \alpha)\) and \((M, G, \beta)\) be exterior equivalent and \(G \) be a compact group. Let \((M, G, \alpha)\) be ergodic. If \(Z(M^\beta) = Z(M)^\beta \), then the \(W^* \)-dynamical system \((M, G, \beta)\) is also ergodic.

Proof. Put \(p = I \otimes e_{11} \) and \(q = I \otimes e_{22} \) where \(\{ e_{ij} \mid i, j = 1, 2 \} \) is the matrix unit of \(M_2 \). Since \((M, G, \alpha)\) and \((M, G, \beta)\) are exterior equivalent, there exists the \(W^* \)-dynamical system \((M \otimes M_2, G, \gamma)\) such that

\[
\gamma_g \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} \alpha_g(x) & 0 \\ 0 & \beta_g(y) \end{pmatrix}
\]

293
for $x, y \in M$ and $g \in G$. It is not difficult to show that

$$Z((M \otimes M_2)^{\gamma}) \subset \begin{pmatrix} Z(M^{\alpha}) & 0 \\ 0 & Z(M^{\beta}) \end{pmatrix}.$$

Since $Z(M^{\beta}) = Z(M)^{\beta}$, we have

$$Z(M \otimes M_2)^{\gamma} = Z((M \otimes M_2)^{\gamma}).$$

Since $M \otimes M_2$ is finite, we consider the canonical central trace $\tau : M \otimes M_2 \to Z(M \otimes M_2)$. We consider the restriction map

$$\tau|_{(M \otimes M_2)^{\gamma}} : (M \otimes M_2)^{\gamma} \to Z(M \otimes M_2)^{\gamma},$$

and denote it by τ^{γ}. Since $Z(M \otimes M_2)^{\gamma} = Z((M \otimes M_2)^{\gamma})$, τ^{γ} becomes the canonical central trace on $(M \otimes M_2)^{\gamma}$. Since p and q are equivalent in $M \otimes M_2$, we have $\tau(p) = \tau(q)$. Since p and q are contained in $(M \otimes M_2)^{\gamma}$, we have $\tau^{\gamma}(p) = \tau^{\gamma}(q)$. Hence p and q are equivalent in $(M \otimes M_2)^{\gamma}$. So we can choose a partial isometry v in $(M \otimes M_2)^{\gamma}$ such that $v^*v = p$ and $vv^* = q$. Let A be the set defined as follows:

$$A = \{x \in M | x \to \alpha_g(x) \text{ is norm continuous}\}.$$

Then A is the α-invariant C^*-algebra and σ-weak dense in M and $A \otimes M_2$ is σ-weak dense in $M \otimes M_2$. Since $(p(A \otimes M_2)p, G, \gamma|_{(A \otimes M_2)p})$ is isomorphic to (A, G, α), $(p(A \otimes M_2)p, G, \gamma|_{(A \otimes M_2)p})$ is topologically transitive by Lemma 2.5. Since p and q are equivalent with γ-invariant partial isometry v, $(q(M \otimes M_2)q, G, \gamma|_{q(M \otimes M_2)q})$ is also topologically transitive by Lemma 2.3. Hence by Lemma 2.4 (M, G, β) is ergodic.

Corollary 2.7. Let a W^*-dynamical system (M, G, α) be ergodic and G be a compact abelian group. Let (M, G, α) be exterior equivalent to a W^*-dynamical system (M, G, β). If $Z(M^{\beta}) = Z(M)^{\beta}$, then $\text{Sp}(\alpha) = \text{Sp}(\beta)$.

Proof. Since (M, G, α) and (M, G, β) are exterior equivalent, it was known in [4] that $\Gamma(\alpha) = \Gamma(\beta)$. By Theorem 2.6, we have $\text{Sp}(\alpha) = \text{Sp}(\beta)$.

294
Ergodic properties of compact actions on C^*-algebras

References

Department of Mathematics, University of Ulsan, Ulsan 680-749, Korea