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GENERIC SUBMANIFOLDS OF A QUATERNIONIC
KAEHLERIAN MANIFOLD WITH NONVANISHING
PARALLEL MEAN CURVATURE VECTOR

SEOUNG DAL JUNG AND JIN SUK PAK

0. Introduction

A submanifold M of a quaternionic Kaehlerian manifold M™ of
real dimension 4m is called a generic submanifold if the normal space
N(M) of M is always mapped into the tangent space T(M) under the
action of the quaternionic Kachlerian structure tensors of the ambient
manifold at the same time.

The purpose of the present paper is to study generic submanifold
of quaternionic Kaehlerian manifold of constant Q-sectional curvature
with nonvanishing parallel mean curvature vector.

In section 1, we state general formulas on generic submanifolds of
a quaternionic Kaehlerian manifold of constant Q-sectional curvature.
Section 2 is devoted to the study generic submanifolds with nonvanish-
ing parallel mean curvature vector and compute the restricted Lapla-
cian for the second fundamental form in the direction of the mean
curvature vector. As applications of those results, in section 3, we
prove our main theorems. In this paper, the dimension of a manifold
will always indicate its real dimension.

1. Preliminaries

Let i : M — M be an isometric immersion of an n-dimensional
Riemannian manifold M into an (n +p)-dimensional Riemannian man-
ifold M with Riemannian metric g. We denote by the same ¢ the
Riemannian metric induced on M from that of M.
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Let V and V be the Riemannian connections on M and M , Tespec-
tively. Then the Gauss and Weingarten formulas are respectively given

by

VxY = VxY + B(X,Y), (1.1)
VxV =-AvX + DxV

for any vector fields X and Y tangent to M and any vector field V
normal to M, where D denotes the operator of covariant differentiation
with respect to the linear connection induced in the normal bundle
T(M)* of M. A and B appearing here are both called the second
fundamental forms of M and are related by

g(B(X,Y), V)= g(AvX,)Y). (1.2)

The second fundamental form Ay in the direction of the normal vector
V can be considered as a symmetric (n, n)-matrix.
The covariant derivative Vx A of A is defined to be

(VxA)VYzVx(AvY)~AvaY—AVY7Xy (1.3)

If (VxA)vY =0 for any vector fields X and Y tangent to M, then
the second fundamental form of M is said to be parallel in the direction
of V. If the second fundamental form is parallel in any direction, it
is said to be parallel. This is equivalent to (VxB)(Y, Z) = 0 for any
vector fields X,Y and Z tangent to M, where we have put

(VxB)(Y,Z)= DxB(Y,Z) — B(VxY,Z) - B(Y,VxZ).

The mean curvature vector v of M is defined to be 1 = %T rB, where
TrB denotes the trace of B. If v = 0, then M is said to be minimal.
A vector field V normal to M is said to be parallel if DxV = 0 for any
vector field X tangent to M. A parallel normal vector field V(s 0) is
called an isoperimetric section if TrAy is constant.

Let M be an (n + p)-dimensional quaternionic Kaehlerian manifold
covered by a system of coordinate neighborhoods {U} and its quater-
nionic Kaehlerian structure be denoted by (g, V)(see,[1]).
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Then there exists a canonical local basis {F, G, H} of the 3-dimensional
vector bundle V consisting of tensors of type (1,1) over M such that

F’=G*=H?= ], (1.4)
GH = -HG = F,
HF = -FH =G,

FG=-GF=H

in each local coordinate neighborhood U, where I denotes the identity
tensor field. Moreover, the local tensor fields F, G and H are almost
Hermitian with respect to ¢ and equations

@ =r(X)G — q(X)H,
G = —r(X)F + p(X)H, (1.5)
\~7 = q(X)F — p(X)G

are satisfied for any vector field X on M, where . g, r are local 1-forms
defined on U.

When M™ is a 4m-dimensional quaternionic Kaehlerian manifold
of constant Q)-sectional curvature ¢, M™ is said to be a quaternionic
space form, we denote such a space by 17\714'”((‘). It is well-known that
a quaternionic space form M*™(c) has the following curvature form

3
RX,V)Z = 2{oV. D)X — g(X.2)7 + S (g, ¥, 216, X
r=1 (16)

916 X, 2y ¥ = 290, X,V . 2)

where ¥y = F 1y = G, and 3 = H.

If the transforms by F,G and H of any vector normal to M are
always tangent to M at the same time, then the submanifold M is
called a generic submanifold. In such a case, n > 3p, because the
ranks of F,G and H are all n + p.

For a generic submanifold Af of .M””(c), we can put

¥, X = P,X + F,.X (r =1,2,3) (1.7)
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for any tangent vector X on M, where P.X and F,. X are the tangential
and normal parts of 1, X, respectively.
Similarly, we put
vV =tV (r=1,2,3) (1.8)

for any vector field V normal to M, where ¢,V is the tangential vector
on M.
It is clear from (1.4), (1.7) and (1.8) that
g(PX,Y)+¢g(X,P.Y) =0, (1.9)
g(F X, V)+¢9(X,t,V)=0 (r=1,2,3)
for any vector fields V normal to M. Moreover, we obtain
( P2=_] -t F,, F.P,=o0, P, =0,
Frts:{—[, r=s
0, r#s(r,s=123)
PyPy +t,F3 = P, P3Py +13,F, = — P,
PyPy +t3Fy = Py, PP+ t,F; = — P,
PP + 41 F = Py, PoPy +t3F) = — Py,
BP,=F, 3P, =F,, F1P, = Fj,
P =-F, AiPs=-F, [LP =-F;,
Pty =t;, Psty =ty, Pity =,
\ Psty = —#1, Pty = —ty, Pty = —13.

(1.10)

Differentiating covariantly (1.7), (1.8), and using (1.1), (1.5), we can
easily see that

(1.11)
(VY.Pl)X = ‘4F1XY + 1‘(Y)P2X - q(Y)PgX + f]B(‘X, Y)
(VyP)X = Ap,xY + p(Y)PsX —r(Y)P, X + t,B(X,Y)
(Vy P3)X = Ap,xY + ¢(Y)PLX — p(Y)P X + 13 B(X,Y),
(1.12)

(Dy F)X = r(Y)F,X — ¢(Y)F3X — B(P,X,Y)
(Dy F2)X =p(Y)F3X — n(Y)F X — B(P,X,Y)
(DyF3)X = q(Y)R X — p(Y)F,X — B(P;X,Y),
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Awt,V = Avt, W equivalently B(Y,t,V) = —-F(AvY) (1.13)
for any vector field X, Y tangent to A and V, W normal to M.

From(1.6), we can easily see that the structure equations of Gauss,
Codazzi and Ricei are respectively given by

R(X,Y)Z = {g(Y )X — g(X,2)Y + Z(g (P,Y,Z)P.X
= (1.14)
— 9(P.X,Z)P,Y —2¢(P.X, Y)PTZ)}
+ Apy,2yX — Apx.n)Y,

I(VxAWY,Z) - g((Vy AKX, Z) (1.15)
3
:2 9(PY, 2)g(FX. V) — (P X, Z)g(FY, V)
_2 (I—D.X Y)g(F.Z, V)}

g(RHX.YIV,U) + g([Av, 4v)X,Y) (1.16)
3
= 2 D UFY,V)g(FX.U) - o(F.X,V)g(FY,U)},
r=1

where R denotes the Riemannian curvature tensor of M and R+ the
curvature tensor of the normal bundle of M given by

RYX.Y)V = DxDyV — DyDxV — DixyyV

for any vector fields X, Y tangent to A and ¥ normal to M.

2. Parallel mean curvature vector field

Let M be an n-dimensional generic subinanifold of an (n + p)-
dimensional quaternionic space form M"*?(c) with nonvanishing par-
allel mean curvature vector field v which satisfies

B(P,X,Y)+ B(P,Y,X) =0 (2.1)
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or equivalently
AvP. X — P, AyX =0 (2.1

for any vector fields X and Y tangent to M and V normal to M.

We set u = -”%” Then p is a nonvanishing parallel unit normal

vector, namely, y is an isoperimetric section in the normal bundle.

We take an orthonormal basis €1, €entp of M™P(c) such that
€1,...,€, form an orthonormal basis of M and €ntl,--.,Entp fOrm
an orthonormal basis of TM* with e, = #, TrAd, =0 (a = n +
2,...,n 4+ p). Unless otherwise stated, we use the conventions that
the ranges of indices are respectively: ¢,7,k,---=1,...,n;a,b,¢c, - =
n+1,...,n+4p.

LEMMA 2.1. The second fundamental forms of M satisfy
9(AuX, AvY) = > (A X, Y )g(Aut, V.t ) (2.2)

3

+ g{g(_X,Y)g(V, /1') - Zg(X,t,u)g(Y,trV)},

r=1
where A, denotes the second fundamental form in the diretion of e,.

Proof. By the assumption, we have AuP- = P A, (r=1,2,3). Hence,
in particular

g(AuPIXstl.V) =0

for any vector field X tangent to M and any vector field V normal to
M. We then have

(VY A PLX V) +g(A(Vy P)X, V) +9(4, Py X, (Vyt)V) =0,
from which, using (1.11) and (1.12),
9((VpyA) P X t,V) + 9(A Ap x Y, 1 V)
+ 9t B(X, PY), Ayt V) — (A, P X, Ay P2Y) = 0.
Using equation of Codazzi, we see
— 020X, PY)g(V, ) + (¥, 65V )g( Fa X, )

= 9(X, 2V)g(F3Y, u) + g(Y, t3V)g(F X, ) — g(X, 43V ) g( F3 Y, #)}
= 2g(tlB(X,P1Y), A‘ltIV) + g(A,,}’, /—1VP14Y) - g(‘4ItX7 AVP]Y)
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Using equation of Ricci, this is

c . ) a .
—Z{Q(X,PlY)g(V,u) + 9(Y. 82V)g(F3 X, 1) — g(Y, t3V)g(Fo X, p)}
= g(tlB(X, Pl}r),A”tl V) -+ g(AV}’,AuplX).

Since, using (1.13)

gL B(PLX,PY), 4,:V) =3 g(AaX, Y )g(Aut, V, 1)

a

— _(](.41?1 )v’.4#t1V, t1F1X),

g(AvY, A PEX) = —g(A, X, AvY) + g(A, Ap vt V1 FL X)),
from which, we have
9 AKX, AVY) = Z{g(PLX, PY)g(V, ) = g(X, tap)g(Y, 1, V)
—9(X, t3u)g(Y, 13V} + g(JA,, Ary ]tV t LX)
+ Y g(AuX, Y )g(Auti Vit ).

Consequently, our equation follows from (1.16).
From (2.2), we have the following

LEMMA 2.2. The square of the length of A, is given by

T?‘Ai = %c(n ~3)+TrA,g(Autip, tip). (2.3)

LEMMA 2.3. The second fundamental forms of M satisfy the fol-

lowing equations:

TrA,TrAS =Y (Tr4,A,)? (2.4)

a

c / c. , 2 2
=— Zn,TrA,Lg(A,,tl,u,tl,u) + Z(T'I‘A”) - E(n - 3)°.
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Proof. From (2.2) and g(Avt1U,t,U) = g(Avt, U, t,U) = g(AytsU, t3U),
it follows that

[
TrAd = 2T 4w =3g(Atip i)} + 3 TrA, Aag(Autip, tre,).

Moreover (2.2) implies
TrA,Aq =TrA,g(Atip,tie,) + z(n —3)g(u,eq),

and consequently

2
—(n-3)%+ —c(n ~3)TrA,g(Autip, tp)

Z(TrA A’ =1

(TrAn)2g(AutlﬂvAutlﬂ)a
TrA#TrAz =£—(T7"Au)2 + i-(n —6)TrA g(Autip, tip)
+ (TTAH)zg(AutIN» Aptip).

From these equations, our equation follows.

By the assumption, we have

Y (Vid)ue =0,

where V; denotes the covariant differentiation in the direction of €;.

LEMMA 2.4. The restricted Laplacian for A, is given by
(V24),X =) (ViVid),X (2.5)
= (R(e;, X)A CZ{3A P2X

—g(FrX,p) Yy Ar.ecei = g(F-X, 1) > t.Blei,e:)
-2 Z g(Aere,', e,-)trp -2 Z g(trB()(, 6,‘), e,')trp,}.
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Proof. From (1.15), we have

(V2A), X =) (ViVid), X

=Y (Rlei, X)A4),ei + - Zz {9(ViF e, p)Pr X
+ g(Frei, u) (Vi POX — g( (V F)X, u)Pre;
— GF X, 1)(ViPyJes — 2g((ViP)X, e}t
—29(Pr X ei)( Vit )u}.

Using (1.11), (1.12) and (1.13). we find (2.5).

From (2.5), we have

gU(V2A), A) = g((ViVid)ues, Aye;) (2.6)

= g((Rlewe)A)ei, Apes ) + = { ZTrAQP"’

r=1

-9 Zg(x’latlcza, Autap) +9Tr A, g( At p, tly)}.

On the other hand, by equation of Gauss (1.14), we obtain
> g((Riei ej)A) i, Ayes) (2.7)
1 . )
=e{nTral — (Tra,)*}+ ) Trid,4,)
— > TrA2AY 4 TrA,TrAl - S (Tra, Al

a

LEMMA 2.5. The curvature tensor R of M satisfies

3
Zg 6276] )peiaAu,ej) = 1_60 n-—p-— ‘)) (28)

Proof. From equation of Ricci (1.16), we have
- 12 T A2 A2 3 2
; Tr(A,A.)° — Z Tra A = —2p - 1), (2.9)

Substituting (2.3), (2.4) and (2.9) into (2.7), we find (2.8).
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LEMMA 2.6. For the second fundamental form Ay, we have

3
9(V* A 4,) = ~2¥(n - p - 2) (2.10)
Proof. First of all, we have

3 3
> Tr(A,P)? = =3Tr AL + 3 g(Aatop, Aat,p). (2.11)
r=1

r=1 a

Furthermore, (2.2) implies
1
D_9(Aatip, Aatip) = 3 g(Aatreq, Atip) + P -1, (212)

Hence, from (2.3), (2.11) and (2.12), we obtain

3
3 TrA?p? - 9> g(Aatiea, Autipr) (2.13)
r=1 a
9
+9TrA g(Aptip, tip) = —Zc(n —-p=2).

Substituting (2.8) and (2.13) into (2.6), we have (2.10).

3. Theorems

Let M be an n-dimensional generic submanifold of a quaternionic
space form M"*?(¢) with nonvanishing parallel mean curvature vector.
First of all, we prove that A(TrA2) = 0. From (2.3),

A(TrAL) = (ViViTra?) (3.1)
= TrA,L{g((VQA)#t”L, tip)

+2 Z g((Vi4),tiu, (\7;'?51)/1)}-
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On the other hand, (2.5) implies

g(V2A)tiptip) =Y g((Rlei,tip)A)ges, trpn) (3.2)

3
+ ZC{TTA“ — Z g(Aatlea’tlﬂ)

a

- Qg(A;Ltlﬂa tllu‘)}'

From (1.12), (1.15) and (1.16), we also have

Y 9(Vid)uti o, (Vity ) (3.3)

c
= Z{2g(A,,_t1;1,,t1y,) + Z g(Aatieq, tip) — TT‘A,L}.

Using equation of Gauss, we see

Zg (e tip)d)ued, tip)
= ZQ(R(_Bi,t],u)A,,‘e,-,tlu) - Zg(R(ei,tl,u)e,', Aptip)
¢ .
= -—-Z{TTA/L - 39(‘A“t1u,t1u)} + Zgg (A,, Adltip, Aatyp).

By the equation of Ricci (1.16), we find

Zg( 6171‘1# A)ue tl/l) (34)

= Zc{za: g(Aatieq tip) + 2g( At tip) — TrAa,).

From (3.1), (3.2), (3.3) and (3.4), we have
LEMMA 3.1. A(TrA2) =0.

Hence we have
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THEOREM 3.2. Let M be an n-dimensional generic submanifold of
a quaternionic space form Mn"tp (c) with nonvanishing parallel mean

curvature vector. If the second fundamental form of M satisfies the
condition P,A = AP, (r=1,2,3), then

(V) = 2e2(n - p - 2)

Proof. Generally, we have

SATrA) = (T ), 4,4 | (VA), [

Thus we have our assertion by Lemma 2.6 and Lemma 3.1.

COROLLARY 3.3. Under the same assumptions as that of Theorem
3.2, we have

1 & .
(VxA),Y = —ZcZ{g(FrY, B)IPX — (P X, Y )t p) (3.5)

r=1

for any vector fields X and Y tangent to M.

Proof. Let us put

3
T(X,Y) = (VxA),Y + icZ{g(FrY, P X — g(P.X, Y )t ).

r=1

Then we have, by equation of Codazzi (1.15),
2 2 3 5
| T [°=[ (VA), | —5¢ (n—p—2)>0.
Therefore, T vanishes identically if and only if

[(VA), *= gcz(n -p—2).
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THEOREM 3.4. Let M be an n-dimensional generic submanifold
of a quaternionic space form M*™(¢) with nonvanishing parallel mean
curvature vector. If P,A = AP, (r = 1,2,3), and if the sectional
curvature of M is nonpositive. then the second fundamental form in
the direction of the mean curvature vector is parallel. So, ¢ =0 or M
is real hypersurface in M*(c).

Proof. We take an orthonormal basis e;,. ., e, such that Ae; =
Aie;. We denote by I3 the sectional curvature of M spanned by e;, €;.
Then we have

, 1 .
Y ol(Rleie;)A) i, Aye;) = S (A= ARy

Substituting this into (2.8), we obtain

Z(/\i - )K= gcz(n -p--2)>0.

Thus if K;; < 0, then ¢*(n — p — 2) = 0 and hence (VA4), = 0 by
Theorem 3.2. Moreover, we have ¢ = 0 or (n—p-2) = 0. f n—p—2 = 0,
then since M is generic submanifold of M™*7(¢), p+2 > 3p. ile.,
2(1 = p) > 0. Hence p=0 or 1.

Ifp =1,n =3, and consequently M is a real hypersurface in ‘7\7[4(c).
If p =0, then n = 2. This is a contradiction.

REMARK. Theorem 3.4 implies that, under the assumption of The-
orem 3.4, the ambient space M*™(¢) admitting any generic submani-

fold with nonpositive sectional curvature is on'y Euclidean space pro-
vided 4m > 8.
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