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LINEAR p(X) = X PRESERVERS OVER
GENERAL BOOLEAN SEMIRINGS

LEROY B. BEASLEY AND SANG-GU LEE

1. Introduction and preliminaries

During the past century, one of the most active and continuing sub-
jects in matrix theory has been the study of those linear operators
on matrices that leave certain properties or subsets invariant. Such
questions are usually called “Linear Preserver Problems”.

Boolean matrices have quite different properties from matrices over a
field, due to the fact that addition in a Boolean algebra does not make it
a group. Boolean matrices may arise from graphs or from nonnegative
real matrices by replacing all positive entries by 1, but their most
frequent occurrence is in the representation of binary relations.

Our results in [2] and [3] are stated mostly for Boolean binary (i.e.,
zero-one) matrices. As K. H. Kim points out in his extensive survey of
the Boolean matrix theory [11], there is an isomorphism between the
matrices over the Boolean algebra of subsets of a k-element set and the
k-tuples of binary Boolean matrices. This isomorphism allows many
questions concerning matrices over an arbitraiy finite Boolean algebra
to be answered using the binary Boolean case. However there are some
features of general (i.e., nonbinary) Boolean matrices that have not
been mentioned and they differ somewhat from the binary case: for
example, 1t may not he zero divisor free.

In many instances, the extension of results to the general case is not
immediately obvious and an explicit version of the above mentioned
isomorphism was not well known. In 1992, S. Kirkland and N. J. Pull-
man [12] gave, in detail, a way to derive results in the general Boolean
algebra case via the isomorphism from the binary Boolean algebra case,
by means of a canonical form derived from the isomorphism.

Received April 2, 1993, Revised April 26, 1993.
This work was partially supported by KOREA Dept. of Education in 1993.



354 Leroy B. Beasley and Sang-Gu Lee

In this paper, we will consider some characterizations of the linear
operators that preserve some matrix polynomial equations over finite
Boolean algebras to illustrate the differences and similarities of the
general vs the binary case.

Let M, (Bx) denote the vector space of all n X n matrices over B
where B; is the Boolean algebra of subsets of a k-element set &£ and
let 01,09, -+, 0k denote the singleton subsets of . As Kirkland and
Pullman defined in [12], we let A € M, (B;) and write + for union and
denote intersection by juztaposition. Under those two operations, By
is a commutative, antinegative semiring; all of its entries, except two
(0 = ¢ and 1 = &) are zero-divisors.

The i** constituent of A = [a;;], A;, is the n xn binary matrix whose
(s,t)th entry is 1 if and only if ay¢ D o;. Evidently the constituent
matrices are binary solutions to the equation,

k
A:Zo"}{i (1.1)

i=1
in the indeterminate n x n matrices X;, X, -, Xi. If 4 =3, 0.:C;

and the C; are all binary matrices, then C; = A; for all 1 < ¢ <
k, because (i) the constituent matrices satisfy equation (1.1) and (ii)
0501 = 0, or 0 according as s = t or not. Thus the constituents of A
are the unique binary solutions to equation. We will refer to ), 0 A4;
as the canonical form of A.

For each linear operator T on M, (Bi) and for each 1 <2 < k,
define T; : M,(B;) — M,(B1) by Ti(X) = 0:(T(X)) where X and
X are (0, 1) matrices with the same pattern [2], X € M,(B;) and
X € Mu(Bg). T; is called the it" constituent of T. Notice that

T(X)=T (ZLI aiX,-) = 5,0/ T(X;) =3, 0:/Ti(X;) for any matrix
X in M,(Byg).

It follows from the uniqueness of the constituents as binary solu-
tions to (1.1) and the fact that the singletons are mutually orthogonal

idempotents that, for each n x n matrix A, all n x r matrices B and
C, and all a € By,

(a) (AB); = AiBi,
(b) (B+C)i=Bi+ (i, and (1.2)
(¢) (ad)i=a;4; forall 1 <2<k
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If z and y are row vectors whose entries z,,y; are n x n binary ma-
trices, let xy be equal to [1y1,22y2,- -, 2xy1], the Hadamard product
of the vectors. We define, for each n x n mairix A over By,

[A] = [‘417‘425 e sAk]s
' constituent of A.
The following theorem is due to S. Kirkland and N. J. Pullman, and
1s easy to verify.

where A; is the ¢!

THEOREM 1.1. [12] The mapping that rends each matrix A over
B, to [A], its vector of constituents, is an isomorphism

For notational purposes we will associate 4 with its canonical form
Y_i 0iA; instead of its vector of constituents [A].

The invertible n xn binary Boolean matrices are all permutation ma-
trices. The invertible matrices over By are orthogonal matrices. This
was originally proved by J. H. M. Wedderburn [14]. He also showed
that a Boolean matrix is invertible if and oaly if all its constituents
are permutation matrices. Let o” denote the complement of « for each
« in By, For 1 <i <k, we define the i*" rctation operator, O, by
O X) =g, XT ¢ ofX. We see that © has the effect of transposing
A; while leaving the remaining constituents unchanged. Each rotation
operator 1s linear on M, (B;) and their product is the transposition
operator, © : X — X7,

We now begin our investigation of p(X) = X matrices and their
preservers over By,

There is an extensive literature concerning characterizations of lin-
ear operators that preserves invariant of matrices over rings and fields.
A number of analogous results have been obtained for matrices over an-
tinegative semirings by L. B. Beasley, D. A. Gregory and N. J. Pullman
in [4, 5,6, 7,8, 9. 10].

But many of the proofs of theorems in the above mentioned refer-
ences use the hypothesis that the antinegative semiring has no zero
divisors. So those theorems are not directly applicable to the Boolean
algebras of more than two members. However, using the canonical
form, the results obtained in the binary case can be exploited to get
results valid for arbitrary finite Boolean algebras.
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In [12], S. Kirkland and N. J. Pullman showed that T preserves
Boolean rank if and only if it is in the group generated by the rotation
and congruence operators. They also gave the following theorem:

THEOREM 1.2. [12, Theorem 3.2] If T is a linear operator on M,
(Bx), n > 2, then the following are equivalent.

(a) T strongly preserves idempotence.

(b) T(A) commutes with T(B) if and only if A commutes with B.

(¢) T is in the group generated by the rotation and similarity
operators.

The following theorem, which is a consequence of an important part
of the Perron-Frobenius Theorem, will be needed in section 2.

THEOREM 1.3. If S is an antinegative semiring and A € M,(S) is
an irreducible matrix with index of imprimitivity h > 2, then there
exist a permutation matrix P such that

PARPT = Al B A & - B Ay, adirect sum of A;’s,

where the A; are primitive matrices.
For a proof, see [13, Theorem 5.9.4].

In this paper, (0, 1) matrices are in either By or By as needed without
special reference. We let p(X) = X™ + X™ 4+ ... + X" where r; >
re > - >ry > 2, d=ged(ry,7m2,- - ,75), and assume d > 2. Also let
A be an antinegative semiring with no zero divisors, n > r > 2 and T
be a linear operator on M, = M, (A) which strongly preserves the set
X ={X € M,(A)p(X) =X}

2. The Boolean (0,1) case

Recall that a matrix X is said to be r-potent if X" = X. Throughout
this section, A = B;, the Boolean algebra of two elements, and all
matrices are in M = M,(B;). In this section, we will characterize all
linear operators that strongly preserve the polynomial equation p(X) =
X and we will assume r > s > 2.
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LEMMA 2.1. A matrix X satisfies X" = X and X* = X if and only
if X% = X where o = ged(r — 1,5 — 1) + 1.

Proof. Suppose X* = X and a —~ 1 = ged(r — 1,5 — 1). Then
r—1 = k(a—1) for some positive integer k > 2 since r > s > 2. There-
fore X7=! = XM= This implies X7 = X*e-Dy = (yo-1)ky —
(Xorhk-lxe-1x = (XA 1Y = (Xo=1)*~1 X Repeat this pro-
cess until k—1 = 1, then we will have X7 = X*e-Dx _ yo-1x _ x
Similarly we will have X* = Y.

Suppose X" = X* = X, » > 5, and a = ged(r — 1,8 — 1)+ 1.
Then there are integers « and b such that a(r — 1) + bs—1)=a~—1.
Ifa=0o0rb=0 cither r —~ 1 ors—11is ged(r — 1,5 — 1) and the
Lemma follows. Therefore we may assume « # 0 and b # 0. Since
r > s 2 2, only one of « and b is positive. Suppose a > 0, b <
0. First we note that @ — & > 0, —b > 0 and hence alr — 1) =
(@ = 1) = b(s = 1). Therefore X =% = Y{a-1=bls=1)  This implies
X% = X" = X=X = xlomby-bstbya Multiply X% on both
sides, then X7t = Yo-ly-lsyae — yo-ly-bya _ yo-lya-b .o
X=X,

If a -0 < r, then there is a nonnegative integer t > 0 such that
a—>b+1t=r. Therefore X" = Yottt = ye-byt o yo-lya—byt _
Xortxombht o yomlyr — Yoo lx = yo g0 YO = Y7 = X,

If a—b > r, then there is a positive integer ¢ such that a — b = r +1.
This implies X"*' = X7t — yo-lye-b o yo-lxr+t Therefore
X = Xo=lX Choose ¢ so that t < 9. Then for some u >
Lr? = t+u and X = X7 = Y xyu-! — ye-lyt+lyu-1 _
X 1X™ = X That is X® = X. The argument if b > 0 and ¢ < 0
is parallel.

LEMMA 2.2, A matrix X satisfies X"+ X* = X if and only if X is
both r-potent and s-potent.

Proof. The necessity is trivial. Now we suppose X" + X* = X.
Then X7 < X and X* < X. Now we only need to show |X7| >
|X] and |X*| > |X|. By restricting our attention to the irreducible
diagonal blocks, we may assume, without loss of generality, that X
is an irreducible matrix with index of imprimitivity h. If X = J, the
conclusion follows immediately since X is idemootent. Suppose X #J.
Then X is not primitive since X" + X® = X. Therefore the index of
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imprimitivity is strictly greater than 1. Now by Theorem 1.3, there
is a permutation matrix P such that P X hpT = X, X, @ @ X
where X;’s are primitive matrices. Therefore there is an integer N such
that [P X hPT]t > [ for all t > N. Without loss of generality, assume
X" > forallt > N.

Since X"+ X* = X and h is the index of imprimitivity of X, there is
an integer a such that r = ab+1 Now choose m so that a™-h™™! > N,
and let ¢ = a™-A™~!. Then X7~ > X"+ X" X Therefore X" >X
since X" > 1. Since X"+ X* = X,(X"+X*)"+(X"+X°)*=X ‘and
hence X™ < X. Repeating, we get X7 < X for all ¢. In particular
X" <Xand X7 <X,

It follows that X7 = X. Now X = X" = (X")rm—1 < X

m-—1

since X" < X. Since xm < X we get X = X7 . Therefore
X7 = (x’”) = X" = X. Similarly X* = X.

LEMMA 2.3. The linear operator T strongly preserves X"+ X* = X
if and only if T strongly preserves X = X where o = ged(r — 1,5 —
1)+ 1.

Proof. By the Lemma 2.1 and 2.2, the lemma follows immediately.

LEMMA 2.4. The linear operator T strongly preserves p(X) = X
if and only if T strongly preserves X = X where o — 1 = ged(ry —
1,rg —1,---, 7 —1).

Proof. Since ged[ged(a —1,b—1),¢c—1] = ged(a —1,b—1,c—1), it
follows directly from Lemma 2.3.

THEOREM 2.1. The semigroup, v, of linear operators strongly pre-
serving p(X) = X is generated by transposition and the similarity
operators.

Proof. Since ¢ is same as the semigroup of linear operators strongly
preserving X® = X, where o = ged(ry — 1,rp = 1,--- ,r¢ — 1)+ 1, the
conclusion follows immediately from Theorem 3.1 in [2] and Lemma

2.4.
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3. Linear p(X) = X preservers over general Boolean semir-
ings

We start with the following lemma in order to generalize Theorem
2.1 to the general finite Boolean algebra case. We also extend Theorem
1.2.

LEMMA 3.1. Let Y € M, (By). Then Y is r-potent if and only if
each constituent Y;,1 <1 < k, is r-potent.

Proof. Suppose Y = >".0,Y; is r-potent Then by observations
(1.2), we have Y" = > . 0;Y7. Thus, > ,c¢;Yi = >, 0:Y; so that

Y: = Y/ for each ¢. Similarly if ¥; = Y] for each 7, then ¥ = Y.

LEMMA 3.2, Suppose T is a linear operator on M, (By). Then T
strongly prescrves r-potence if and only Iif each constituent operator
T;, 1 <i < k. stronglyv preserves r-potence on M ,(By).

Proof. Suppose that T strongly preserves r-potence on M, (By) and
Yi, 1 <2 <k, is r-potent. Then ¥ = > o1} is r-potent and hence
T(Y) = > ,0;Ti(Y) is r-potent. That is, each T;(Y") is r-potent by
Lemma 3.1 and hence T; preserves r-potence. If Y is not r-potent, let
Y; = I for y # ¢ Then Y is not r-potent but T;(Y;) is »-potent for
all j # . Thus T;(Y}) is not r-potent, for otherwise T(Y") would be
r-potent, an impossibility. Thus T; strongly preserves r-potence.

Now, suppose each constituent Ty, : = 1, ,k, strongly preserves
r-potence. Then Y is r-potent if and only if Y; is r-potent, : = 1,--- | k,
if and only if T,(}}) is r-potent, ¢ = 1,--- &, if and only if T(Y) =
>, i Ti(Y:) is r-potent. That is, T strongly preserves r-potence.

LeMMA 3.3. Suppose T is a linear operator on M, (By). Then
T strongly preserves the polvnomial equaticn p(X) = X over By if
and only if each constituent T,, 1 < i < k, strongly preserves the
polynomial equation p(X) =X over B;.

Proof. This follows from Lemmas 2.4 and 3.2.

THEOREM 3.1. Suppose T is a linear operator on My(By). Then
T strongly preserves the polvnowmial equation p(X) = X if and only if
T is in the group generated by the rotation and similarity operators.

Proof. Since all rotation and similarity operators preserve p(X ) = X
strongly. we only need to show auy linear operator on matrices over
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B that strongly preserves p(X) = X, is generated by those two sets
of operators. But this follows from Lemma 3.3, Theorem 2.1, and the
remarks on rotation operators.

Therefore we have the following generalization of Theorem 1.2.

CoRroOLLARY 3.1. IfT is a linear operator on M,(By), n > 2, then
the followings are equivalent.

(a) T strongly preserves the polynomial equation p(X) = X.

(b) T(A) commutes with T(B) if and only if A commutes with B.

(¢) T is in the group generated by the rotation and similarity
operators.

4. Linear p(X) = X preservers over antinegative semirings

Rings and fields are examples of semirings, but there are also some
semirings which are not rings. One good example is an antinegative
semiring. No ring with unity can be antinegative, but rnany interesting
structures, such as the nonnegative integers, the nonnegative reals,
and the Boolean algebras are antinegative semirings which occur in
combinatorics.

In [2], [3] and the previous section, we have given characterizations
of linear operators on matrices that preserve several polynomial equa-
tions over the binary Boolean semiring and general Boolean semirings.
Our next step is to extend those results to linear operators on matrices
over any antinegative semiring with no zero divisors such as nonneg-
ative integers, and nonnegative reals. The mapping accomplished by
associating each matrix, A, in M,(A) with its pattern, A, in M, (B;)
is a semiring homomorphism when A is antinegative and zero-divisor-
free.

If T is a linear operator on M,(A), let T, its pattern, be the op-
erator on M,(B,) defined by —T_(_E—;) = T(E;;) for all (z,5). Then
T(A) < T(A) for all 4 in M, (A). Equality holds if A is an antinega-

tive semiring having no zero divisors.

LEMMA 4.1. [10, Lemma 1.1) The mapping T — T is a homo-
morphism of the semigroup of linear operators on M,(A) onto the
semigroup of linear operators on M,(B;).
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Let A € M,(A). Recall that the scaling operator, L4, induced by
A, was defined by L4 : X — Ao X,

Throughout this section, let ¢ = ¢,,(A) denote the semigroup of all
linear operators on M, (A) strongly preserving r-potence. Let o' =
©'(A) denote the semigroup of all linear operators on M (A) strongly
preserving polynomial equation p(X) = X. Let d = gcd(r; — 1,7y —
1, re— 1) + 1.

LEMMA 4.2. The semigroups ¢ and o' arc generated by the scaling
operators in p, transposition and the similarity operators.

Proof. Suppose T € ¢, (resp. ¢'). Then T € @n(B;) (resp. en(B1))
since T(X) = T(X) whenever A is an antinegative semiring having no
zero divisors. Therefore T is in the semigroup of operators generated
by the similarity operators and hanbposltlon by Theorem 2.2 (resp.
Theorem 3.2) in [2]. Thus T(X) = M o T(.1) for some M € M and
the lemma follows.

For some semirings, we can characterize the scaling operators that
strongly preserve r-potence or p(X) = X

LEMMA 4.3. Ifn > 3 and every element of A is idempotent, then the
identity operator is the only scaling operator that strongly preserves
r-potence.

Proof. Clearly, the identity operatoris L;. Suppose L = L 4 strongly
preserves r-potence for some A. Let 7,; and k be distinct positive
integers, ¢, 7.k < n. Put Xy = a;Ei; + Eix + Ejj + Ejp, Jijx =
E,‘j + Ea+ EJ’J' + Ejkw\rjk == (lijjJ + E]'k, and J]‘k = E“' -+ Ejk. It
is easily seen that J;;x and Jjx are r-potnet. Since L(X;;1) = L{Jijx)
and L(XJ-L) = L(Jjx), we have that X;j; and Xt are r-potent. Then
the (7, k) entry of (Xijx)" is a,; while the (7, k) entry of X,z is 1. Thus,
ai;j = 1. Also, the (5, k) entry of (X;i)" is «;; while the (j, %) entry
of X, is 1. Thus. aj; = 1. Since ¢,; were arbitrary chosen, we have

A=
Note: In Lemma 4.3, A need not be antinegative.

THEOREM 4.1. If n > 3 and everv member of A is idempotent
then o is generated by transposition and the similarity operators; ¢ is
therefore a group.
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Proof. This is immediate from Lemmas 4.1 and 4.2.

The permutation matrices are the only invertible matrices over those
antinegative semirings that have only one unit 1, such as the nonnega-
tive integers, any chain semiring, such as the fuzzy scalars, or the two
element Boolean algebra. For any antinegative semiring A, @ is invert-
ible in M,(A) if and only if @ = PD for some permutation matrix P
and some diagonal matrix D whose diagonal entries are all units in the
antinegative semiring A.

COROLLARY 4.1. If n > 3, the semigroup of linear operators on
the n x n matrices over any Boolean algebra or chain semiring, that
strongly preserves a polynomial equation p(X) = X, is generated by
transposition and the operators X — PX PT | P a permutation matrix.

LEMMA 4.4. If L4 preserves r-potence on M, (A), then each diag-
onal entry in A is r-potent.

Proof. Since I" = I we must have that L4(I) is r-potent. Thus
(AoI)" = [La(D))” = La(l) = Ao, and thus a}; = ai for all
t, 1 << n.

The antinegative semirings of combinatorial interest are mostly those
with Boolean arithmetic, i.e. (A,U,N) where U = + and N = -, and
those with real arithmetic, i.e. subsemirings of RT. We note that all
these semirings are examples of semirings where 1 is the only 7-th root
of unity in it. We investigate (A) when A has one of these types of
arithmetic.

LEMMA 4.5. Suppose A is an antinegative, commutative semiring
with only one (r — 1)** root of unity, 1. having the multiplicative can-
cellation property.

(i) If La strongly preserves r-potence, then
(a) each diagonal entry in A is 1, and
(b) whenn > 3,L 4 is a unit scaling operator
(i) If aij = a,-a{l for some invertible a;,a; in A, for all 1, ), then
L 4 strongly preserves r-potence.

Proof. Since each diagonal entry in A is an r-potent (Lemma 4.4)
and none are 0 by Theorem 2.1 in [2], it follows by the cancellation
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property, that a; ' = 1. This implies a;; = 1 for all i since A has only
one (r — 1) root of unity, 1. This establishes (i) (a).

Next we fix ¢ and choose j # 1. Let R = ng?;i(Eik + Eji), then by
direct computation we have (4o R)* = (40 R)* and hence (Ao R)™ =
(A o R)? for all m > 1. In particular, (40 R)” = (40 R)2. But R is
r-potent so its image, 4 o R = L 4(R), is r-potent too. Consequently
AoR=(4A0R) = (Ao R)* ic. Ao R isiderapotent.

Therefore

Z (ain B + ap Ejr) = Z (@irajrEix + aji Ejx) .
kst ki

Therefore
ik = a;;a;4, for all & #«, (4.1)

and by interchanging the roles of ¢ and j in (3 1), we obtain
Ak = AjiQik, for all % #£ 7, (4.2)
Since n > 3 we can choose g # i.j obtaining
Mg = Q505,04 (4.3)

from (4.1) and (4.2). Suppose a;, = 0, then X + E;; + Eij + Eiy +
Ej; + Eyy is r-potent while Y = Ej; + E;; + Ej, + E,y is not. But
AoX = AoY, contradicting that L 4 strongly preserves r-potence.
Thus a;; # 0 for all 2.;. Hence from (4.3), 1 == a;;a;; so that a;; is a
unit for all 7, 7. From (4.1) we have a;y = a4;a,4 so that a;; = (I,‘ga]“g]‘
Let ay = a3z and ap = ag; for all & > 2. This completes the proof of
part {1).

The verification of part (i) is a straight-forward computation.

Let Pt be the nonnegative members of a nontrivial subring P of the
reals. That is, if P = R (reals) then P* = R*, f P = Z (integers) then
Pt =7Z*.

Note : If A = Z%. then Lemma 4.5 (i) impiies that all a;; = 1.
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THEOREM 4.2. The semigroup ¢ = pn(P") os generated by trans-
position and the similarity operators, unless n = 2 and My(P*)’s
r-potent are triangular and hence are on a single line. In that case, an
additional family of generators is required, namely, the set of scaling

'c] o X with zy > 0.

operators X — [; )

Proof. Because a scaling operator induced by a matrix A satisfying
the codition, Lemma 4.5 (i), is the similarity operator X — DX D!
where D = diag(ai,as, - ,an), the theorem is immediate from The-
orem 2.2 in [2] and Lemma 2.2 in [2] unless n = 2 and M(P*)’s
r-potents are triangular. In that case, suppose T is in ¢. Lemma 3.3
implies that we may assume T is a scaling operator, say T = L. Ac-
T

1 for some x,y in P*. Then zy > 0,

cording to Lemma 4.5, A = {;

otherwise Ao [1 (1)} is r-potent while “ (1)] is not, a contradiction.

. . _ 1
Conversely, by observation the scaling operators X — [y T] o X

strongly preserves r-potent matrices.

COROLLARY 4.2. The semigroup ¢ = @.(R™") is generated by trans-
position, permutation similarity and X — D X D~! where D is a
diagonal matrix and all d;; > 0.

COROLLARY 4.3. The semigroup ¢ = @,(Z") is generated by trans-
position and permutation similarity, unlessn = 2 and r isodd. If n = 2

and r is odd, an additional family of generators is needed, namely all
1 =

the scaling operators X — 1

} o X with zy > 1.
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