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THE INTERMEDIATE SOLUTION OF QUASILINEAR
ELLIPTIC BOUNDARY VALUE PROBLEMS

Bongsoo Ko*

1. Introduction
We study the existence of an intermediate solution of nonlinear el-
liptic boundary value problems (BV P) of the form

(BVP) { Au = f(r,u, Vu), in Q

Bu(z) = ¢(x), on 09,

where 2 is a smooth bounded domain in R", n > 1, and 9Q € c>e,
(0 < a < 1), A is the Laplacian operator, Vu = (Dyu, Dou, - - - , Dpu)
denotes the gradient of u and

au

Bu(x) = p(z)u(x) + ¢(a )__ .

du ..
where — denotes the outward normal derivative of u on 89,

Supp(l)jse now, that ¢, o and w, @ are two pairs of subsolutions
and supersolutions in the class C? (Q) or in the usual Sobolev space
W2P(Q), p > n of (BV P) such that o(z) < o(x), w(z) < W(x), o(z) <
w(z) for all z €  and 6(z¢) < w(xg) for sonie zo € Q. Then there is
a solution in the order interval [¢, o] = {u € C(Q) : o(z) < u(z) <
#(z), z € @} and a solution in [w, @]. And furthermore Amann (1]
or Amann and Crandall [3] showed that there exists an intermediate
solution in the set [, ]\ ([0, 9] U [0, 1¥]) under additional conditions.

The existence of a solution given a pair of quasisubsolution and
quasisupersolution of (BV P), ¢ and o, with ¢(z) < #(z) for all z € Q,
1s well known (see [9]). Since these functions may have singular points

Received April 22, 1993.
* This paper was supported(in part) by NON DIRECTED RESEARCH FUND,
Korea Research Foundation, 1992.



402 Bongsoo Ko

in the interior of {2, there arises the question, does there also exist
an intermediate solution if there are pairs of quasisubsolutions and
quasisupersolutions as in the preceding paragraph ?

Suppose now, in addition, that f is independent of Vu and that
there are pairs of quasisubsolutions and quasisupersolutions as in the
preceding paragraph. Ko [6] proved the existence of an intermediate
solution in {7, @] \ ([9,9] U [w, w]) under additional conditions. Hence
there also arises the question, does there exist an intermediate solution
if f depends nonlinearly on Vu 7

The author is able to solve the above problem which is the existence
of an intermediate solution for (BV P) using Maximum Principles and
the theorem on existence of several fixed points (see pp241, [4]). The
multiplicity result is a generalization of Theorem(1.6) in {1] or Theorem
2 in [3].

As a simple application of our results, we prove the existence of sev-
eral positive ordered solutions in a class of singularly perturbed quasi-
linear elliptic Dirichlet boundary value problems with small positive
parameter.

Throughout this paper we assume that p, ¢ € C1*(99) are non-
negative real valued functions which either ¢(z) = 0 for all z € 8Q or
g(z) > 0 for all z € 9Q, and f satisfies the following conditions:

O<a<l,

(1) f:QxIxR"™ — Risa a-Holder continuous function, such that
f(-,&€,m) € C*(Q) and such that %Jg—t and —g——j: are continuous
_on
where (2,&,7) denotes a generic point of & x I x R" and I is
a fixed bounded and closed interval in R.
(2) There exists a continuous function ¢ : Ry — Ry = [0, 00)
such that

|F(z, €,m)] < elp)(1+ n%)

for every p > 0 and (2,§,7n) € Q x [—p,p] x R™.
(3) ¢ € C**(Q) and for the Dirichlet problem case, ¢(z) € I for
all z € 90

By a solution of (BV P) we mean a function w : 0 — I such that
u € C?(Q) and u satisfies (BV P) pointwise.
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2. Main results

First of all, we state definitions of a quasisubsolution and a quasisu-

persolution of (BV P).

DEFINITIONS. A function w : 0 — R is a quasisupersolution of
(BVP)in Q, if for any zo € §2, there exist a neighborhood N of 24 and

a finite number of functions wi € C*(N), k= 1,2,--. ,p such that
I (x) = mi (),
(I) w(z) 11;1132;’ wi(x),

for all z € N, where p may depend on zg, and
(II) Awp(2) £ flz,we(z), Vwi(a)),
forallz € NNQ and k= 1,2, ,p. Furthermore, if z¢ € 99,

dwy.
(111) P(l‘-o)wk(l‘o)JrQ(fﬂo)—(%/i(l'o) > (o),

for all k.

A quasisubsolution w : Q@ — R is defined similarly, replacing min by
max in (I) and reversing the inequalities (1] and (IIT).

To state the theorem for the existence of an intermediate solution
of (BVP), we need the following notations: Let u, v : £ — R be
functions. Then we write u < vif u(z) < v(ziforallz € Q, and u < v
if u <wbut u # v. By [u, v] we mean the order interval between u and
v, that is,

o] ={w: Q@ - R:u<u<v}.
The following theorem is the main result.

THEOREM 1. Let f satisfy (1) and (2) and ¢ satisfy (3). Suppose
that v; is a quasisubsolution and ¥; is a quasisupersolution of (BV P)
for j = 1,2 such that ©; < Oy, b2 < Do, 5y < D2 and D1(x0) < B2(20)
for some 7y € . Assume moreover that 1 and ©2 are not solutions
of (BVP) and [vy(x),d2(x)] C I for all x € Q. Then (BVP) has at
least three distinct solutions u; such that v; < w; < wg < up < Do,
u; € vy, 0;] for j = 1,2 and wa € [1, 02 \ ([t1, &1] U [#2. D2]).

Theorem 1 is a generalization of Theorem(1.6) in [1] or Theorem 2
in [3] and follows at once from the next proposition.
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PROPOSITION. Let the hypotheses of Theorem 1 hold and let h :
R"™ — R™ be defined by h(z) = (hi(z), ha(z), -+ , hn(z)) and bounded
and of class C'! such that each partial derivatives for h; is bounded on
R"™. Then the following elliptic boundary value problem

(BVP) { Au = f(z,u, h(Vu)) in

Bu=¢ on 0N
has at least three distinct solutions ug, w1, uz such that v1 < u; < ug <
ug < g, uj € [l_)]‘, ﬁ]‘] forj =1,2, andup € [51, ’52]\([’51, '51]U[‘52, 132])
To prove Proposition, we first convert (BV P;) into an operator
. 0
equation. Choose A > 0 large enough so that —élg—(:c,ﬁ,h(n)) +A>0

for all (z,€,m) € @ x I x R™. For any g € [01,02) N C°(2) we assume
that A satisfies

f(l',Cl, h(O)) + /\(Cl - g(l)) < 0 < .f(l‘ac'la h(O)) + ’\(C'Z - g(.’E))

for some constants ¢, ¢; with ¢; < 0 < ¢z and for all z € Q. Fur-
thermore, if Bu = u, then ¢ : @ — [e1,¢2], and if not, p(x)c; <
¢(z) < p(z)cq for all z € OQ. Then it is known that there is a solution
u € C*(Q) of the following boundary value problem

Au = flz,u, (Vu))+ A(u—¢g) I Q
{ Bu=¢ on 09.

This solution is denoted by u = T'¢ below.

LEMMA 1. A function u € [ty,02] N C*(Q) is a solution of (BV Py)
if and only if u = Tw.

LEMMA 2. Let v; and 0; be a quasisubsolution and a quasisuperso-
lution of (BV Py), respectively. Then

9; <Tv; and Tv; <9;.

Proof. To show Tdj(x) < dj(x) for all 2 € Q, suppose that there is
a point zo € §2 such that 0j(x¢) < T0;(xg). Let a = T;(2) — v9;(2) be
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positive maximum value of T'0; — 6;. Then there exists a neighborhood
U; of £ such that 2 € U; and 0 < Toj(x) — v;{z) < afor all z € Us;.
Case 1. ¢ € Q.

By the definition of a quasisupersolution, there exist a neighborhood
N; and a finite number of functions wy € C*(N;), k=1,2,--- ,p such
that £ € N; C U; and

vi(x) = min wi(z
J( ) 1 <k<p ok )

for all z € N; N Q. Let 4;(3) = wy(2) for some k. Then 0 < Toj(z) —
wi(z) < aforall z € N; NQ and T9; — wy has the positive maximum
value a at £ in the neighborhood N; N .
On the other hand, in N; N Q, by Mean Value Theorem,
Alwy — Toy)(x)
Sz, wi(2), (Vwr(a))) — fla, To(a), (VT8;(x)))
— \(T#,  3;)(x)
<[fe(z, € (x), h(Vwi(x))) + N(w0y — To;) ()
+ folz, Toj(z), h(n*(z))) - dh - V(w, — To;)(z).

Since f, - dh is bounded on Q x I x R™, we can choose a bounded
function b : R™ — R™ such that

fo(z, To;(x), h(n*(2))) - dh - V(wp — Toj)(x) < b(x) - V(wg — To;) ()
for all z € N; N Q. Hence, on N; N,
A(wk - Tﬁ])(l) — b(”L) : V(wk — Tﬁ])(l) < 0.

By Maximum Principles, Toj(x) —wi(z) = afor all 2 € N; N Q,
whence T0;(z) = 9;(z) + a for all z € N; N Q. By the continuation of
the method on the boundary of N; N2, we can conclude that T9;(2) =
dj(z)+ a for all x € Q. And so, fox any x € {0,

Atj(z)
=ATv;(z)
=f(z,8;(x), (VDj(2))) + (fe(z, £ (2). h(Vij(2))) + Na
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where £*(z) lies between ¢j(z) and 9;(z) + a. Hence, for any x € Q,
A6;(2) 2 fla,b5(2) H(Viy(2)))

Since Adj(z) < f(z,9;(z). h(VD;(z)) locally in Q, so
[fe(, €7 (), A(VD;(2))) + Ala < 0.

This leads to a contradiction for a > 0.
Case 2. 7 € 0N
Since T9;(2) = wi(2) + a and 0 < Toj(z) — wi(z) < a for all
z € N; N, so
dT;(2) > dwi(%)

dv = dv
If p(2) > 0, then
dT0;(2
8(2) = p()T5,(2) + g(8) T AL
dw,. T
> p(@)ou(3) + a) + g(8) 22
2 ¢(2) + p(Z)a.
This leads to a contradiction for p(&)a > 0.
Let p(2) = 0. Then ¢(2) > 0. If
dTv](J:) dwi(T)
dv dv
then
dT;(%) dwi(z)

o(&) = o@)——~— > q(&)—r—
This also leads to a contradiction. Let
dT;(2) _ dwi ()

dv dv

For all z € N; N Q,
A(Tﬁ, - WE — a)(;z)
>f(z,To;(2), (VT0;(z))) — flz,wi(z), M(Vwi(z)))
+ /\(Tﬁ]‘ — ’f)j)(ﬂ?) .
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By the Mean Value Theorem and choosing suitable bounded function
b: R™ - R" as before, we can also show that

A(To; —wi —a)(z) — b(z) - V(TO; — wg —a)(z) > 0.

Since T'0; — wi — a has the zero maximum value of the boundary point
z in N; N Q, by Maximum Principles, for all 2 € N; N Q,

Toj(z) —wi(z) =a.

This implies that T'0; — wy has the positive maximum value a at an
interior point of . By Case 1, this also leads to a contradiction.
Therefore, Tv; < 9;.

Similarly, we can show that To; > v;. W

LEMMA 3. Let v; and ©; be a quasisubsolution and a quasisuperso-
lution of (BV Py), respectively. Then T is an increasing operator from

[0;,0;] N C*(Q) into itself, i.e. if u < v, then Tu < Te.

Proof. Since [#;,0;] N C*() is a bounded interval in C(§), if we
choose two constants ¢; and ¢, such that ¢y < 0 < ¢, ¢1 —¢g < 0,
ez —g > 0for all g € [0;,0;]NC*(Q), then there is u € [¢1, 2] NC*()
such that u = Tyg.

We first show that T is well-defined on [0;,9,]NC*(Q). Let u = Tg
and v = Tg¢. Then

Alu—v)(z) = flz,u(z), R(Vu(2)))— flz,v(x), {(Ve(z))+Mu—v)(z).
If we choose some bounded functions b; : R™ — R", 7 = 1,2 so that
Alu —v)(a)—bi(z) V(iu—2v)zr) <0,

and
Alu —v)(2) = byz) - V(u—0v)(2)>0,

for all z € ©, then by Maximum Principles, u = v.
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We secondly prove that T is increasing on [5;,9;] N C*(2). Let
91,92 € [95,0;] N C*() and g1 < g2. Then
A(Tg2 — Tg1)(x)
=[f(z, Tg2(x) h(Vng z))) — f(z,Tg2(a), (VT g1(x)))]
+ [f(z. Tg2(x), (VT g1(2))) = f(z, Tg:1(2), A(VTg1(2)))]
+A(Tyg2 - Tgl)(-t) + Ag1 — g2)(2).

We then choose two bounded functions b: R* — R™ and §: R" — R
such that —A < 8(z) < A for all z € 2 and

A(Tgy — Tgr)(zx) — b(z) - V(Tg2 — Tg1)(z)
= (B(2) + M(Tg2 = Tg1)(x) < Mg1 — g2)(z) <0

for all z € . By Maximum Principles, (T'g2 — Tg1)(z) > 0, = € Q.
By Lemma 2 and that T is increasing, we note that u = Tyg €
(7,5, C(Q). W
LEMMA 4. Let ¢; and v; be a quasisubsolution and a quasisuper-

solution of (BV Py ), respectively. Then T is continuous and compact
from (v;,0;] N C*(Q) into itself.

Proof. We first show that T is continuous. Consider a sequence {g}
in [0;,0;] N C*(Q) and suppose limy—.oo gn = ¢ in [01,02] N C¥(2) and

lim Tgn, =vy
n—o0

in _C'Q*"(Q). Then lim, oo AT¢g, = Ay and lim,_.o Vgn = Vy in
C(2). Hence

Aylx) = f(z,y(x), H(Vy(a))) + My — g)2)

for all z €  and By(z) = ¢(z) for all x € Q. By the uniqueness of
solutions corresponding g, Tg = y. By the Closed Graph Theorem, T'
is continuous on [5;,9;] N C*().

We note that C%*(Q) is compactly embedded in C*(Q2). Hence T
is compact on [t;,9;] N C*(). W

To extend the operator T to [7;,7;]NC(Q) continuously, we will use
the following theorem. It can be found in Amann and Crandall [3].
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THEOREM 2. Let f satisty ( f2). Then there is an increasing func-
tion v : [0,00) — [0, 00) such that if u is a solution of (BV Py) then

lullwzra) < v(lulle))

Moreover, v depends only on A, B, 0, n, p, and c.

Since C%(Q) is dense in C(Q) and T is a continuous increasing com-
pact operator from [;,9;] N C*(Q) into itself, we can extend T to
[Dj,9;] N C() continuously and compactly. To show that this is possi-
ble, let u € [7;,9,]NC(Q). Then there exists a monotone sequence {uy, }
in [6;,9;] N C*() so that u, — uin C() as n — oco. Since {Tuy,}
is bounded in C(Q), by Theorem 2, {Tu,} is bounded in W2P(Q),
and if p > n, then {Tu,} is bounded in C**(Q). By the Mean Value
Theorem, {Tu,} is equicontinnous on C(Q). By Ascoli-Azela Theo-
rem, {Tu,} has a convergent subsequence in C(§). Since {Tu,} is
monotone, we can define Tu by

Tu = lim Tu,.

NG
Since Tu, is bounded in C*(Q), so Tu € C%(). Therefore, we
view T as a continuous extension to an operator (denoted again by
T') mapping [0;,%,] N C(2) into [0;.9;] N C*(£). Since the imbedding
of C*(Q) in C(Q) is compact it follows that the operator T maps
[0;,8,] N C(Q) compactly into [¢;,5;] N C(Q).

To complete the proof of Proposition, we need the special ordered
Banach space C.(£2) whose positive cone is normal and has nonempty
interior. In defining C(Q), ¢ € C(Q), e(x) > > 0forallx € Q, e(z) # 0.
Let C.(§2) be the set of all functions u E C() so that

—ce(a) <ulz) < ce(z)

for some constant ¢ > 0 and for all 2 € Q. If u € C.(), we define the
norm

lulle = inf{c > 0: —ce(x) < u(z) < ce(x), 2 € Q} .
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It can be shown that the Minkowski functional ||| is a norm on Ce(£2).
Furthermore, C¢(2) is a Banach space with respect to the norm.(see

2])

Now we state the theorem which will be use in proving the exis-
tence of an intermediate solution of (BV Py) for Dirichlet boundary
condition. The main idea of the proof for the following theorem can
be found in Amann [2].

THEOREM 3. Let e be the unique solution of the boundary value
problem
Ae(z)= -1, z€
elz) =0, x€N

and T be the operator induced by the boundary value problem

ATu = f(a,Tu, (VTu)) + A(Tu —u), x € Q
Tu(z) =10, x€ I

with a quasisubsolution ¥; and a quasisupersolution 0; of ( (BV Pp) so
that ©; < ©;. Then C.(Q) is continuously imbedded in C( (Q) and T is
a compact operator from [7;,0;] N C(Q) into Ce(S2).

Proof. By the previous statements, T maps [8;,9,] N {u € C(Q) :
ulag = 0} compactly into [9,9;]N {u € C*(Q) : u|sq = 0}. Therefore
it suffices to show that {u € C'(Q): ulag = 0} is continuously imbed-
ded in C.(Q). We follows the proof in [2, Theorem 4.2]. Since, by the
Maximum Principle, on every compact subset of €2, e is bounded below
by a positive constant and since, for every z € 99, '2; < 0, it follows
by continuity that, for every u € C3(Q), there exist v, § > 0 with

—oe <u < fle,

ie. C3(f) is a subset of C.(£2). Since convergence in the norm of
Ce(Q) as well as in the norm of CJ() implies pointwise convergence,
it is easily seen that the injective map from C{(€2) into C.({2) is a
closed linear operator. Hence, by the Closed Graph Theorem, C}(£2)
is continuously imbedded in C.(Q) and the statement follows. B

Now, we obtain the conclusion.
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THEOREM 4. Let v; and 9; be a quasisubsolution and a quasisu-
persolution of (BV Py), respectively. Then the operator T induced
by the problem (BV Py) is continuous, increasing and compact from
[9j,9;) N C(Q) into itself.

Finally, to prove Proposition, we will use the following theorem of
existence of several fixed points, and we can find it in Deimling [4] or
Amann [2].

THEOREM 5. Let X be a Banach space: S C X a retract and T :
S — S compact; Sy, Sy nonempty disjoint retracts of S; E; C S; open
in S for j = 1,2. Suppose that T(S;) C S; and Fix(T)N(S; \ E;) =0
for j = 1,2, where Fix(T) = {u € §: Tu = u}. Then T has fixed
points uj € E; and a third fixed point ug € S\ (51 U S,).

Proof of Proposition.
Case 1. ¢g(z) > 0 for all 2 € 9.
Let

O1 = {u € C(Q) :ulzx) < d1(x), x € Q},

and
Oy = {u € C(Q) 1 u(x) > vy(2), z € Q},

S = ['D],ﬁz] N C(Q), Sy = [61’61} N C(N), Sy == [52,”[)2] N C(Q) E, =
SN0y, and E2 = SNO;. Then Ey and E; are open in S. From Lemma
2,3,4, and Theorem 4, T : § — S is compact. Clearly, S; and S, are
disjoint retracts of S, E; C S;, T(S;) C S; for j = 1,2. To show that
Fix(T)N(S;\ E;) = 0, we assume that there is u € Fix(T)N (S; \ E;)
for some j. Then v € S; \ E; and Tu = u.

Let j = 1. We note that u is a solution of (BV' Py). Since u € S\ E;,
so 01 < u < 9y and there is a point zg € § such that u(zg) = 01(zp).
By the definition of a quasisupersolution, let

oy (a) = IISHLHSIP wr(x)
on some neighborhood U,, of @y and let u(xg) = wy(xp) for some k.
For all z € U,, N 2, we can show that

Alu —wi)(a) = b(a) - Viu —wg)(x) - Alu — wy)2)

2[—Ge(x, & (), M{Vul(r))) + A(wr — u)(z) >0,
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where b : R® — R" is some bounded function. Since ©; is not a
solution of (BV P,), by Maximum Principles, u(z) = wi(z) for all
z €Uy, NQ and 2o € JN. Since u — wy has a zero maximum value
at the boundary point zo, either u(z) = wi(z) and z € U,, N Q or
-d—“’—&(mo) < d"( zo). We note that both cases lead to a contradiction.
Consequently, Fix(T)N(S1\ E1) = 0.

Similarly, we can show that Fix(T) N (S, \ E2) = 0. Therefore, by
Theorem 5, T has at least three distinct fixed points wp, u;1, uz such
that u; € [5,0;] for j = 1,2, and especially note that -

Uy € [17], i)g] \ {51,1"11] U [172,1’)2] .

Case 2. ¢(z) = 0 for all z € 90.
We assume that the Dirichlet boundary condition for (BV Py), i.e.
Bu=u=¢ =0 o0n 0. Let

S = Co(Q) N [71,12)

and .

Sj = Ce(Q) N [v;,9;]
for j = 1,2. We note that T : § — S is compact; S; C S and
nonempty; T'(S) C S, T(S;) C Sj for j = 1,2. Since S, S; and S, are
convex in C.(?), these are retracts of S, and clearly $; NS, = 0. Let

Er =51N{u€Ce(Q):u(z) < t(z),z €Q}

and

Ey =5 N{u€ C(Q): u(z) > t2(z),z € N} .

We show that E; and E; are openin S. Let v € Eq. Then v(z) < 91(z)
for all z € Q, and there is constant ¢ > 0 such that
—ce(x) < v(z) < ce(x)

for all z € Q. Then we can choose 8 > 0 so that 8 < ¢ and v(z) +
Be(x) < 01(x) for all z € Q. Let B(v, ) be the open ball in S with
respect to the norm || - ||, with center v and radius 8. Then for any
u € B(v, ),

—pe(r) Su(z) —v(z) < fe(x)
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for all z € Q. Hence u(z) < Be(z)+ v(z) < 6y (a) for all x € Q. Hence
u € F,. Therefore, B(v,) C E;.

Similarly, we can show that E, is also open in S.

Next, we show that Fix(T) N (S; \ E;) = 0, j = 1,2. Suppose that
there is u € Fix(T) N (S; \ E;) for some j. Then u € S;\ E; and
Tu = u.

Let 3 = 1. We note that u is a solution of (BV Py). Sinceu € S\ E,
U1 < u < 03 and there is a point 9 € Q such that u(xo) = 01(zo).
By Maximum Principles and the definition of a quasisupersolution of
(BV Py ), we can show that there is a neighborhood U, of o such that
u(z) = 01(z) for all 2 € U,, N Q. By the continuation of this method
on the boundary of the neighborhood U,, i §2, we can conclude that
u(z) = 0y(z) for all 2 € Q. This implies that ©; is a solution of the
(BV Py,). This leads to a contradiction because 9, is not a solution of
(BV Py).

Similarly, we can prove that Fix(T) N (S: \ Ey) = 0. Therefore, T
satisfies all conditions of Theorem 5. So T has at least three distinct
fixed points ug, uy, up such that wu; € [0;,9,], 7 = 1,2, and note that

uo € [01,02] \ [01,01] U [02,02]. W

To prove the main theorem, we will use the following well known
theorem and it can be found in [7):

THEOREM 6. Let f satisfy the condition { f2). For every constants
P > 0 there exists a constant Q > 0 such that: if u is a solution of

Au = flz,u,Vu), 2z,

u € C*(), |u(z)| < P for all z € Q, then [Vu(z)] < Q for all x € Q.
The constant Q only depends on P and the bounding function c.

Proof of Theorem 1.
Since we seek solutions of (BV P;,) on the order interval [01,02] N
C(Q), we can choose Qy > 0 such that if u is a solution of Ay =
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flz,u,Vu), for all z € Q and v; < u < 2, then |Vu(z)|] < Qo for all
x € Q). Since 2 is compact, we let

Q; = sup{any directional derivatives of %; at z} < oo
el

and

Q; = sup{any directional derivatives of 9; at z} < oo
zefl

for y = 1,2. Furthermore, let Q@ = max{Qg,Ql,Ql,Qz,Qg}. Then we
choose a bounded smooth function & : R™ — R™ such that h(n) = 7 if
In] < @+ 1 and its differential dh is bounded on R™. To get the main
result, we solve the following boundary value problem

Au = f(z,u,h(Vu)), z€Q
Bu(z) = ¢(z), =z € 0N.

Hence, Proposition implies the proof. W

REMARK. The above theorem is valid if we replace A by a uniformly
elliptic operator

_L:E:E:Aﬁuu7f+Z;A4@DP+Adm,

=1 j=1

where the coefficients of L and B are smooth.

3. A simple application

In this section we apply the main theorem to obtain the several
positive ordered solutions in a class of singularly perturbed quasilinear
elliptic Dirichlet problem. Let 2 be a bounded open domain in R"
with 89 € C%*. We look for positive classical solutions of

2 i 2 N .
(BVP.) {eAu+gunvm +f(u)=0 in Q
u=0 on 9,
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where € is a small positive parameter, ¢ : £ — R is a-Hélder contin-
uous, and f :[0,00) — R is required to be €. More assumptions on

(1) There exist exactly N(> 2) positive numbers a; such that a; <
az < -+ <ap, fla;) =0, and f'(a;) < 0.
(2) There exists an n-dimensional open subdomain o of € such

that 90y € C*°, g(x) > 0forall z € Q

/ flu)du >0

N.

(3)

forall r € [0,a;) and i = 1,2, --

b

The result of this application is the following multiplicity theorem.

THEOREM 7. With assumptions (1), (2), and (3), there exists ¢ > 0
such that for all e with 0 < € < ¢y, (BV P,) has 2N —1 ordered positive
solutions u,(z;¢€), wip1(xse), wipr(ase) for all v € Q and uy(x;€) — a;
as € = 0 uniformly on every compact subsets of Q.

Proof. We solve the following boundary value problem

{ e*Au+ flu)=0 in
u = () on 0.

By the results of Dancer[10] and Kol[6], there is ¢y > 0 so that for all
€ with 0 < € < ¢, the above problem has 2N — 1 ordered positive
solutions v;(z;e), Vip(@ie), vigrlzie), (1 = 1,2,--- | N), such that
vi(zye) < a;, vi(zie) < vip1(x5€) < vigr(a €) for all zy € Qy and

vi(Z; €) — a; as € — 0 uniformly on every compact subsets of . Let

ui(x;e

vilse) if x €y
)= 0 if )\ Qg

forz =1,2,--- | N. Since g(x) > 0 on Q. so @;(z; €), a; and Uit (z;€),
@it1 are two pairs of a quasisubsolution and a quasisupersolution of
(BVP,) for 0 < € < g, respectively and satisfy all conditions in the
main theorem. This completes the proof.
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REMARK 1. In the Theorem 7, if we replace the condition f € C?
by the assumption that f € C® and there is a positive number 7o such
that

flai—7)>0 and f(a;+7r)<0

for all r with 0 < r < 7¢, we can also obtain the same multiplicity result
by choosing a function f € C! so that sup{|f(u) — f(u)| : u € [0,00)}
is sufficiently small.

REMARK 2. If f(0) > 0, with assumption f'(a;) < 0 for ¢ =
1,2,---,N,(BVP.)has 2N —1 ordered positive solutions as the ones of
Theorem 7 by choosing a function f; € C! such that sup{|f(u)— fi(u)| :
u € [0,a;]} is sufficiently small and f{(a;) < 0.
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