HOLLOW MODULES AND CORANK RELATIVE TO A TORSION THEORY

Young Soo Park and Seog-Hoon Rim

Let τ be a given hereditary torsion theory for left R-module category R-Mod. The class of all τ -torsion left R-modules, denoted by \mathcal{T} is closed under homomorphic images, submodules, direct sums and extensions. And the class of all τ -torsionfree left R-modules, denoted by \mathcal{F} , is closed under submodules, injective hulls, direct products, and isomorphic copies ([3], Proposition 1.7 and 1.10).

Notation and terminology concerning (hereditary) torsion theories on R-Mod will follow [3]. In particular, if τ is a torsion theory on R-Mod, then a left R-submodule N of M is said to be τ -closed (τ -dense, resp.) submodule of M if and only if M/N is τ -torsionfree (τ -torsion, resp.). A module M is called τ -cocritical if $M \in \mathcal{F}$ and $M/N \in \mathcal{T}$ for each nonzero submodule N of M. A left ideal L of R is τ -critical if R/L is τ -cocritical.

The purpose of this paper is to investigate some properties of τ -hollow modules and their finite direct sum. We define the irredundant number of this sum of τ -hollow submodules of given an R-module M as relative corank of M. We study systematically some properties on relative corank of M. Finally we give new class of modules that has a relative supplement in the sense of Page [6].

Following Porter [9], we say ideals I, J are τ -comaximal if I+J is τ -dense in R. Let I_1, I_2, \dots, I_n be ideals of R, they are pairwise τ -comaximal in case $I_i + I_j$ is τ -dense in R whenever $i \neq j$. For example, if each I_i is a maximal τ -closed ideal of R or each I_i is a τ -critical ideal, then these ideals are pairwise τ -comaximal.

LEMMA 1. ([8]) Let R be a commutative ring and $\{I_i|i=1,2,\cdots,n\}$ be pairwise τ -comaximal ideals of R. Let M be any left R-module, then we have the following:

Received May 15, 1993. Revised July 26, 1993.

The authors acknowledge both the supports of the Basic Science Research Institute Program, Ministry of Education and TGRC-KOSEF.

- (1) $I_i + \bigcap_{i \neq i} I_i$ is τ -dense in R for each $i = 1, 2, \dots, n$.
- (2) $I_iM + (\bigcap_{j\neq i}I_j)M$ is τ -dense in M for each $i=1,2,\cdots,n$.

Using the above lemma, we can improve one result of Porter ([9],) and get the following:

THEOREM 2. ([8]). Let R be a commutative ring and $\{I_i|i=1,2,\cdots,n\}$ be a finite family of pairwise τ -comaximal ideals in R. For any left R-module M, we have

- (1) $(\prod_{i=1}^n I_i)M \to (\bigcap_{i=1}^n I_i)M$ is τ -surjective and
- (2) $M \to \bigoplus_{i=1}^n M/I_iM$ is τ -surjective with kernel $\bigcap_{i=1}^n I_iM$.

We examine R-submodules $\{I_iM|i=1,2,\cdots,n\}$ of M in the above lemma and theorem, and consider the following concept in module theoretic sense.

DEFINITION. Let M be a left R-module, a set of left R-submodules of M $\{A_i|i=1,2,\cdots,n\}$ is called τ -coindependent in M if (i) each A_i is not τ -dense in M and (ii) $A_i + \bigcap_{j\neq i} A_j$ is τ -dense in M for each $i=1,2,\cdots,n$.

A family $\{A_i|i\in I\}$ of submodules of an R-module M is said to be τ -coindependent if every finite subfamily is τ -coindependent.

For example, given pairwise τ -commaximal ideals $\{I_i|i=1,2,\cdots,n\}$, of a commutative ring R, consider left R-submodules $\{I_iM|i=1,2,\cdots,n\}$; then Lemma 1(2) shows that $\{I_iM|i=1,2,\cdots,n\}$ is τ -coindependent in M.

For $A \subseteq M$, we define τ -closure of A in M (denoted by A^c) by $A^c/A = \tau(M/A)$, and hence A^c is τ -closed in M.

At first we give a characterization of τ -coindependency of a set of countably many submodules of M.

LEMMA 3. Let $\{A_i\}$ be a countable family of non- τ -dense sub-modules of M, then the following are equivalent. When we denote $S_{i,n} = \bigcap_{j \neq i} A_j$ for $j = 1, 2, \dots, n (j \neq i)$

- (a) For each $n \geq 1, A_1, A_2, \cdots, A_n$ are τ -coindependent;
- (b) For each $n \geq 1, A_1^c, A_2^c, \cdots, A_n^c$ are τ -coindependent;
- (c) A_1, A_2, A_3, \cdots are τ -coindenpendent;
- (d) $A_1^c, A_2^c, A_3^c, \cdots$ are τ -coindenpendent;
- (e) For each $n \geq 1$, $A_n + S_{n,n}$ is τ -dense in M;
- (f) For each $n \geq 1$, $A_n^c + S_{n,n}^c$ is τ -dense in M;

- (g) For each $n \geq 1$, $\sum_{i=1}^{n} S_{i,n}$ is τ -dense in M; (h) For each $n \geq 1$, $\sum_{i=1}^{n} S_{i,n}^{c}$ is τ -dense in M.

Proof. From the definition, we can check easily the following (a) \Leftrightarrow (c), $(d) \Rightarrow (b)$ and $(a) \Rightarrow (e)$.

- (a) \Rightarrow (b). Since each A_i is not τ -dense in M, $A_i^c \neq M$ (of course A_i^c is not τ -dense in M). $A_i^c + \bigcap_{j \neq i} A_j^c$ is clearly τ -dense in M.
- (b) \Rightarrow (a). By the hypothesis $A_i^c \neq M$, each A_i is not τ -dense in M.

$$(A_i + \cap_{j \neq i} A_j)^c = A_i^c + (\cap_{j \neq i} A_j)^c = A_i^c + \cap_{j \neq i} A_j^c.$$

Thus $(A_i + \bigcap_{j \neq i} A_j)^c$ is τ -dense in M, which means $A_i + \bigcap_{j \neq i} A_j = M$.

The equivalences of $(c) \Leftrightarrow (d)$, $(e) \Leftrightarrow (f)$ and $(g) \Leftrightarrow (h)$ are similar to (a) \Leftrightarrow (b).

(e) \Rightarrow (g). We prove this by induction on n. Assume that $A_n + S_{n,n}$ is τ -dense in M and $\sum_{i=1}^{n-1} S_{i,n-1}$ is τ -dense in M. Since $S_{n,n} \subset S_{i,n-1}$, we have

$$\sum_{i=1}^{n-1} S_{i,n-1} = \sum_{i=1}^{n-1} (S_{i,n} + S_{n,n}) = \sum_{i=1}^{n} S_{i,n}$$

by the modular law. So $\sum_{i=1}^{n} S_{i,n}$ is τ -dense in M. (g) \Rightarrow (e). Since $\sum_{i=1}^{n} S_{i,n} \subset A_i + S_{i,n}$, we have that $A_i + S_{i,n}$ is τ -dense in M for every $i = 1, 2, \dots, n$.

For an example of a module which has countably many τ -coindependent submodules, consider the left Z-module Z (the integer set) and usual torsion theory τ (i.e., $T = \{0\}$ and $\mathcal{F} = \mathbb{Z}\text{-Mod}$). Then the set $\{p\mathbf{Z}|p=\text{all the prime numbers}\}\$ forms a countable τ -coindependent family of zZ.

Following [4] or [6], we give the following;

DEFINITION. (1) The submodule N of M is τ -small in M if for a submodule L of M, such that N+L is τ -dense in M, then L is τ -dense in M.

- (2) We call a left R-module M τ -hollow if every non- τ -dense submodule of M is τ -small in M.
- (3) If U is a submodule of M, we say the submodule X is τ supplement of U in M if U+X is τ -dense in M, but U+Y is not

au-dense in M for any proper submodule Y of X. L is called a au-supplement submodule if L is a au-supplement of some submodule of M.

(4) M is said to be τ -supplement if for any two submodules U and X of M, with U+X is τ -dense in M, X contains a τ -supplement of U.

REMARK. Any τ -torsion submodule of M is always τ -small in M. In particular if M is τ -torsion, then M is automatically τ -hollow. If M is non- τ -torsion, we can mod out τ -torsion part, which is always τ -hollow. Thus from now on we may consider τ -torsionfree, τ -hollow module M mainly.

The following lemma provides a criterion to check when a submodule is a τ -supplement. The idea of the proof modified from Miyashita's work.

LEMMA 4. Let U and X be submodules of M. Then X is a τ -supplement of U if and only if $X \cap U$ is τ -small in X.

Proof. Assume that X is a τ -supplement of U, and let $U \cap X + D$ be τ -dense in X. Thus $U + U \cap X + D = U + D$ is τ -dense in M. By the minimality of X such that U + X is τ -dense in M, D is τ -dense in X. Hence $U \cap X$ is τ -small in X. On the other hand, assume the condition and let U + U' be τ -dense in M with $U' \leq X$. Then $U' + U \cap X$ is τ -dense in X, since $U \cap X$ is τ -small in X, U' is τ -dense in X. Therefore X is a τ -supplement of U.

Now we list some facts on τ -small submodules which will be used freely.

LEMMA 5. Let A, B and C be submodules of M

- (1) If A is τ -small in B and $B \leq C$, then A is τ -small in C;
- (2) A is τ -small in M, $A \leq B$ and B is τ -direct summand of M, then A is τ -small in B:
- (3) If A is τ -small in M and $\varphi: M \to N$ is a homomorphism, then $\varphi(A)$ is τ -small in $\varphi(M)$.
- (4) A is τ -small in B and B is τ -dense in M, then A is τ -small in M.
- (5) A is τ -dense in B and B is τ -small in M, then A is τ -small in M.

(6) A is τ -small in M if and only if A^c is τ -small in M.

Now we want to list some properties on τ -hollow modules.

DEFINITION. Following Garcia, M is said to be τ -local if and only there exists a unique maximal proper τ -closed submodule of M.

LEMMA 6. If M is a finitely generated τ -hollow module, then either $J_{\tau}(M) = M$ or M is τ -local.

Proof. Since M is finitely generated, there exist x_1, x_2, \dots, x_n in M such that $M = \sum_{i=1}^n Rx_i$. If each Rx_i is non- τ -dense in M for $i = 1, 2, \dots, n$, then $\sum_{i=1}^n Rx_i$ is τ -small in M, which implies that $M = J_{\tau}(M)$. On the other hand, if Rx_j is non- τ -dense in M for $j \in J \subseteq \{1, 2, \dots, n\}$ then $\sum_J Rx_j = J_{\tau}(M)$ is maximal τ -closed submodule of M; so by [3,E24.5] M is τ -local.

COROLLARY 7. If R is τ -hollow as left R-module, then R is τ -local.

LEMMA 8. (1) If M is τ -hollow, then M/K is τ -hollow for any submodule K of M.

(2) If M/V is τ -hollow and V is τ -small in M, then M is τ -hollow.

Proof. (1) By the definition and Lemma 5(3).

(2) Suppose that M is not τ -hollow module, then there exists non- τ -dense, non- τ -small submodule K of M. Since V is τ -small in M, K+V is non- τ -dense in M; so $\frac{K+V}{V}$ is non- τ -dense in $\frac{M}{V}$. K+V is non- τ -small in M. Also, if K+V+L is τ -dense in M for some $L \leq M$, K+L is τ -dense in M because V is τ -small in M. Since K is non- τ -small in M, L cannot be τ -dense in M; i.e., $\frac{K+V}{V}$ is non- τ -small in $\frac{M}{V}$, which contradicts that M/V is τ -hollow.

REMARK. We have an example: $\frac{M}{V}$ is τ -hollow but may not τ -cocritical. Let R=Z and $M=Z(p^{\infty})$ and $V=Z(2^i)$, then $\frac{M}{V}$ is τ -hollow but not τ -cocritical for given usual torsion theory τ .

LEMMA 9. If X is τ -hollow submodule and τ -dense in M, then M is τ -hollow.

Proof. Let K be a non- τ -dense submodule of M. Then $K \cap X$ is non- τ -dense in X. Since X is τ -hollow, $K \cap X$ is a τ -small submodule of X. Now by the Isomorphism Theorem K is τ -small in K + X. On

 \odot

the other hand K+X is τ -dense in M, by Lemma 5(4), K is τ -small in M. Thus we have the result.

LEMMA 10. Let $\{A_i\}$ be a countable family of τ -coindependent submodules of M and $\{B_i\}$ be a family of submodules of M such that $A_i \subset B_i$ and B_i/A_i is τ -small in M/A_i for each i. Then for each $n \geq 1$, $\bigcap_{i=1}^n B_i/\bigcap_{i=1}^n A_i$ is τ -small is $M/\bigcap_{i=1}^n A_i$.

Proof. For each $n \geq 1$, $A_i + S_{i,n}$ is τ -dense in M for $i = 1, 2, \dots, n$ by the Lemma.

$$B_i/A_i = (A_i + (S_{i,n} \cap B_i))/A_i$$

$$\cong (S_{i,n} \cap B_i)/\bigcap_{i=1}^n A_i \subseteq S_{i,n}/\bigcap_{i=1}^n A_i$$

Thus $(S_{i,n} \cap B_i)/\bigcap_{i=1}^n A_i$ is τ -small in $S_{i,n}/\bigcap_{i=1}^n A_i$ for every $i=1,2,\cdots,n$. It follows that $(\sum_{i=1}^n (S_{i,n} \cap B_i))/\bigcap_{i=1}^n A_i$ is τ -small in $\sum_{i=1}^n (S_{i,n}/\bigcap_{i=1}^n A_i)$, which is τ -dense in M. Thus $\sum_{i=1}^n (S_{i,n} \cap B_i) = \bigcap_{i=1}^n B_i$ implies the result.

Mainly, we study R-modules in which every family of τ -coindependent submodules is finite. Examples of such modules include relative artinian modules, relative hollow modules and relative local modules. Also we can see in Proposition 16 a new class of modules satisfying this finiteness condition.

LEMMA 11. Let M be an R-module such that every family of τ -coindependent submodules is finite. Then for every τ -closed submodule U of M, there exists a τ -closed submodule V of M containing U such that M/V is τ -hollow.

Proof. If M/U is not τ -hollow, there exists a non- τ -dense submodule X_1/U of M/U which is not τ -small in M/U. Thus there exists $L_1/U \leq M/U$. $\frac{L_1+X_1}{U}$ is τ -dense in $\frac{M}{U}$, but $\frac{L_1}{U}$ is not τ -dense in $\frac{M}{U}$. If M/L_1 is not τ -hollow, pick a τ -closed submodule L_2 and X_2 of M containing L_1 such that L_2+X_2 is τ -dense in M; just as before we pick L_1 and X_1 . By induction pick at the n-th step, in case M/L_{n-1} is not τ -hollow, τ -closed submodules L_n and X_n of M such that L_n+X_n is τ -dense in M. To prove that this process must stop, it suffices to prove that L_1, L_2, \cdots, L_n are τ -coindependent for every $n \geq 1$. First we prove the following by induction on n,

$$X_n + (L_1 \cap \cdots \cap L_n)$$
 is τ -dense in M .

Suppose that $X_{n-1} + (L_1 \cap \cdots \cap L_{n-1})$ is τ -dense in M. Then

$$X_n + (L_1 \cap \dots \cap L_n) = X_n + X_{n-1} + (L_1 \cap \dots \cap L_n)$$

= $X_n + (L_n \cap (X_{n-1} + (L_1 \cap \dots \cap L_{n-1}))).$

Now by the induction hypothesis, $X_n + (L_1 \cap \cdots \cap L_n)$ is τ -dense in $X_n + L_n$. Since $L_n + X_n$ is τ -dense in M, we have the result. For every $i = 1, 2, \dots, n$, we have

$$L_{i} + S_{i,n} \supset L_{i} + (L_{1} \cap \cdots \cap L_{i-1} \cap X_{i})$$

$$= L_{i} + X_{i-1} + (L_{1} \cap \cdots \cap L_{i-1} \cap X_{i})$$

$$= L_{i} + X_{i} \cap ((L_{1} \cap \cdots \cap L_{i-1}) \cap X_{i-1})$$

By \odot , $(L_1 \cap \cdots \cap L_{i-1}) + X_{i-1}$ is τ -dense in M. Thus $L_i + X_i$ is τ -dense in M implies that $L_i + S_{i,n}$ is τ -dense in M. Thus $\{L_1, L_2, \cdots, L_n\}$ are τ -coindependent, and this proves the existence of a submodule V containing U such that M/V is τ -hollow.

A left R-module M is called τ -semicocritical if M can be embedded in a finite direct sum of τ -cocritical modules. The following seems a generalization of τ -semicocritical module which is characterized in Teply ([12], Proposition 1.1).

THEOREM 12. Let M be a non- τ -torsion R-module such that every family of τ -coindependent submodule is finite. Then there exists an integer $n \geq 1$ with the following (*)

(*) M has a family U_1, U_2, \dots, U_n of τ -coindependent submodules such that $M/U_1, M/U_2, \dots, M/U_n$ are τ -hollow and $U_1 \cap U_2 \cap \dots \cap U_n$ is τ -small in M.

Proof. By Lemma 11, M has a τ -closed submodule U_1 such that M/U_1 is τ -hollow. If U_1 is not τ -small in M, pick a τ -closed submodule V_1 such that $U_1 + V_1$ is τ -dense in M and a τ -closed submodule U_2 of M containing V_1 such that M/U_2 is τ -hollow. If $U_1 \cap U_2$ is not τ -small in M, pick a τ -closed submodule V_2 such that $(U_1 \cap U_2) + V_2$ is τ -dense in M and a τ -closed submodule U_3 of M containing V_2 such that M/U_3 is τ -hollow. Proceed by induction to obtain at the n-th step: in case $U_1 \cap U_2 \cap \cdots \cap U_{n-1}$ is not τ -small in M, choose a τ -closed submodule

 V_{n-1} and U_n such that $V_{n-1} \subset U_n, (U_1 \cap \cdots \cap U_{n-1}) + V_{n-1}$ is τ -dense in M and M/U_n is τ -hollow.

By Lemma 3, the family of τ -closed submodules U_1, U_2, \dots, U_n is τ -coindependent for every $n \geq 1$. Since M does not have infinite families of τ -coindependent submodules, the above process must stop at the n-th step for some $n \geq 1$.

DEFINITION. The number n defined in above theorem is called *relative corank of* M and it shall be denoted by $C_{\tau}(M) = n$.

REMARK. If $C_{\tau}(M)=2$, let $\{U_1,U_2\}$ be τ -coindependent submodules satisfying the conditions in the definition. Then U_1 and U_2 are mutually τ -supplement. For U_1+U_2 is τ -dense in M and $U_1\cap U_2$ is τ -small in U_1 and U_2 respectively.

COROLLARY 13. Let $C_{\tau}(M) = n$ and N be a τ -dense submodule of M, then $C_{\tau}(N) = n$.

Proof. Let $\{U_1, U_2, \dots, U_n\}$ be τ -coindependent family in M satisfying the condition (*). Let's consider a family $\{U_1 \cap N, U_2 \cap N, \dots, U_n \cap N\}$ in N, we can check that this family satisfies the condition (*) on N.

At first we check the following elementary properties on $C_{\tau}(M) < \infty$.

LEMMA 14. For a left R module M, we have the following;

- (1) $C_{\tau}(M) = 0$ if and only if $M \in \mathcal{T}$.
- (2) $C_{\tau}(M) = 1$ if and only if M is τ -hollow.
- (3) N is τ -direct summand of M, then $C_{\tau}(N) \leq C_{\tau}(M)$.

Proof. (1) If $M \in \mathcal{T}$, then M does not contain any τ -closed submodules. So there is no τ -coindependent submodule.

On the other hand if $M \notin \mathcal{T}$, then $\tau(M) \neq M$. By Lemma 11, there exists a τ -closed submodule V of M such that M/V is τ -hollow. If V is τ -small in M, then $C_{\tau}(M) \geq 1$, contradicts the assumption $C_{\tau}(M) = 0$. If V is not τ -small in M, apply Lemma 6, there exists $K \supseteq V$ such that M/K is τ -cocritical, which means that K is τ -small in M, i.e. $C_{\tau}(M) \geq 1$. Thus we have the result by the contradiction.

(2) Suppose that $C_{\tau}(M) = 1$. Then by the definition, every family of τ -coindependent subset consists only one element, say $\{V\}$, M/V

is τ -hollow, V is τ -small in M. By the Lemma 8(2), M is τ -hollow. Conversely, we may assume that M has finite τ -corank, say $C_{\tau}(M) = n$. If M is not τ -hollow, then by the Lemma 11, there exists a non- τ -small τ -closed submodule K in M such that M/K is τ -hollow. So $C_{\tau}(M) \geq C_{\tau}(M/K) = 1$, which is contradicts the hypothesis $C_{\tau}(M) = 1$.

(3) There exists $N' \leq M$ such that $\tau(M) \leq N'$ and N+N' is τ -dense in M. By the Corollary 13, $C_{\tau}(N+N') = C_{\tau}(M)$ and $N' \geq \tau(M)$ by using the idea of the proof (2) in the above, we can see that $C_{\tau}(N') \geq 1$. Thus $C_{\tau}(N) \leq C_{\tau}(M)$.

PROPOSITION 15. Let M be a left R-module with relative corank n. We have the following:

- (a) Every τ -coindependent family of submodules of M has at most n elements.
- (b) A submodule U of M is τ -small in M if and only if there exists a τ -coindependent family U_1, U_2, \dots, U_n of submodules of M such that M/U_i is τ -hollow for each $i=1,2,\dots,n$ and $U \subset U_1 \cap U_2 \cap \dots \cap U_n$.
- *Proof.* (a) Let $\{N_1, N_2, \dots, N_k\}$ be a family of τ -coindependent submodules of M. By Lemma 11, there exist $\{U_i\}$ such that $N_i \subset U_i$ and M/U_i is τ -hollow for each $i=1,2,\dots,k$. If $U_1 \cap U_2 \cap \dots \cap U_k$ is not τ -small in M, by Theorem 12, it can be lengthened to be so; hence $k \leq n$.
- (b) Since $C_{\tau}(M) = n$, let $\{V_1, V_2, \dots, V_n\}$ satisfy condition (*) in Theorem 12.
- (\Rightarrow) Let U be a τ -small in M, and let $U_i = U + V_i$. Then $\{U_1, U_2, \dots, U_n\}$ satisfies the condition.
 - (\Leftarrow) Take $U = U_1 \cap U_2 \cap \cdots \cap U_n$.

PROPOSITION 16. If a τ -torsion free left R-module M has a decomposition $M = N_1 \oplus N_2$, then $C_{\tau}(M) = C_{\tau}(N_1) + C_{\tau}(N_2)$, in case $C_{\tau}(M) < \infty$.

Proof. We may denote that $C_{\tau}(N_1) = n$, $C_{\tau}(N_2) = m$. By definition we can choose $\{U_i\}$, $i = 1, 2, \dots, n$ ($\{V_j\}$, $j = 1, 2, \dots, m$ resp.) be non- τ -dense submodules of $N_1(N_2 \text{ resp.})$ satisfying the condition (*) in Theorem 7. Consider a family $\{U_i + N_2, V_j + N_1\}$ where $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, m$.

$$(U_i + N_2) + (\bigcap_{k \neq i} (U_k + N_2) \cap (\bigcap_{j=1}^m (V_j + N_1)) \supseteq U_i + N_2 + \bigcap_{k \neq i} U_k.$$

Now by (*), we can see that $(U_i+N_2)+(\bigcap_{k\neq i}(U_k+N_2)\cap(\bigcap_{j=1}^m(V_j+N_1))$ is τ -dense in M.

$$\frac{M}{U_i + N_2} = \frac{N_1 \oplus N_2}{U_i + N_2} \cong \frac{N_1}{U_i} : \tau\text{-hollow}$$

thus $M/(U_i + N_2)$ is τ -hollow. Similarly $M/(V_j + N_1)$ is τ -hollow.

$$(\bigcap_{i=1}^{n}(U_{i}+N_{2}))\cap(\bigcap_{j=1}^{m}(V_{j}+N_{1}))=(\bigcap_{i=1}^{n}U_{i}+N_{2})\cap(\bigcap_{j=1}^{m}V_{j}+N_{1})$$
$$=\bigcap_{i=1}^{n}U_{i}+\bigcap_{j=1}^{m}V_{j}$$

which is τ -small in $N_1 + N_2$, so $(\bigcap_{i=1}^n (U_i + N_2)) \cap (\bigcap_{j=1}^m (V_j + N_1))$ is τ -small in M. Thus $C_{\tau}(M) = n + m$.

COROLLARY 17. Let N_1, N_2, \dots, N_k be τ -coindependent family of submodules of an R-module M such that $\bigcap_{i=1}^k N_i = 0$. Then

$$C_{\tau}(M) = \sum_{i=1}^{k} C_{\tau}(M/N_i).$$

Proof. For any two τ -coindependent submodules N_1 and N_2 of M, there exists an exact sequence,

$$0 \to \frac{M}{N_1 \cap N_2} \to \frac{M}{N_1} \oplus \frac{M}{N_2} \to \frac{M}{N_1 + N_2} \to 0.$$

Thus $\frac{M}{N_1 \cap N_2}$ is τ -dense in $\frac{M}{N_1} \oplus \frac{M}{N_2}$. Since $\{N_1, N_2, \cdots, N_k\}$ is a τ -coindependent family, inductively we have that $\frac{M}{\bigcap_{i=1}^k N_i}$ is τ -dense in $\bigoplus_{i=1}^k \frac{M}{N_i}$. Since $\bigcap_{i=1}^k N_i = 0$, we can say that M is τ -dense in $\bigoplus_{i=1}^k \frac{M}{N_i}$. By Corollary 13 and Proposition 16, we have the following;

$$C_{\tau}(M) = C_{\tau}(\bigoplus_{i=1}^{k} \frac{M}{N_i}) = \sum_{i=1}^{k} C_{\tau}(\frac{M}{N_i}).$$

PROPOSITION 18. $C_{\tau}(M) = n$ is equivalent to (**):

(**) There exist a family H_1, H_2, \dots, H_n of τ -hollow R-modules and $f: M \to \bigoplus_{i=1}^n H_i$ such that \inf is τ -dense in $\bigoplus_{i=1}^n H_i$ and $\ker f$ is τ -small in M.

Proof. (\Rightarrow) Since $C_{\tau}(M) = n$, there exists τ -coindependent family $\{U_1, U_2, \cdots, U_n\}$ satisfying (*). Consider an R-homomorphism $f: M \to \bigoplus_{i=1}^n \frac{M}{U_i}$, $\ker f = \bigcap_{i=1}^n U_i$ is τ -small in M. $\operatorname{im} f \cong \frac{M}{\bigcap_{i=1}^n U_i}$ is τ -dense in $\bigoplus_{i=1}^n \frac{M}{U_i}$ in the proof of Corollary 17.

(\Leftarrow) By hypothesis $M/\ker f$ is τ -dense in $\bigoplus_{i=1}^n H_i$, where each H_i is τ -hollow module. By Lemma 14(1), and Proposition 16,

$$C_{\tau}(M) = C_{\tau}(M/kerf) = C_{\tau}(\bigoplus_{i=1}^{n} H_i) = \sum_{i=1}^{n} C_{\tau}(H_i) = n.$$

LEMMA 19. If $C_{\tau}(M) = n < \infty$ and K is τ -supplemented in M, then $C_{\tau}(M) = C_{\tau}(K) + C_{\tau}(M/K)$.

Proof. Since K is τ -supplemented, there exists a τ -closed submodule W in M such that K+W is τ -dense in M and $K\cap W$ is τ -small in K; thus $K\cap W$ is τ -small in M. Using the short exact sequence,

$$0 \to \frac{M}{K \cap W} \to \frac{M}{K} \oplus \frac{M}{W} \to \frac{M}{K + W} \to 0.$$

We have $\frac{M}{K\cap W}\cong \frac{M}{K}\oplus \frac{M}{W}$, and since $K\cap W$ is τ -small in M, $C_{\tau}(M)=C_{\tau}(\frac{M}{K\cap W})=C_{\tau}(\frac{M}{K})+C_{\tau}(\frac{M}{W})$. And $\frac{K}{K\cap W}$ is isomorphic to $\frac{K+W}{W}$ which is τ -dense in $\frac{M}{W}$. Thus we have $C_{\tau}(\frac{M}{W})=C_{\tau}(\frac{K}{K\cap W})=C_{\tau}(K)$, using the fact $K\cap W$ is τ -small in K. We have the result $C_{\tau}(M)=C_{\tau}(K)+C_{\tau}(M/K)$.

PROPOSITION 20. If $M \in \mathcal{F}$ and $C_{\tau}(M) = n$, then $M/J_{\tau}(M)$ is τ -semicocritical.

Proof. If $J_{\tau}(M) = 0$, since $C_{\tau}(M) = n$ there exists a family $\{U_1, U_2, \dots, U_n\}$ τ -coindependent submodules of M such that M/U_i is τ -hollow for each $i = 1, 2, \dots, n$ and $\bigcap_{i=1}^n U_i$ is τ -small in M. By ([3], 24.3) $J_{\tau}(M) \supset \bigcap_{i=1}^n U_i$; so $\bigcap_{i=1}^n U_i = 0$. Consider an exact sequence

$$0 \to \frac{M}{\bigcap_{i=1}^n U_i} \to \oplus \frac{M}{U_i} \to \frac{M}{\sum_{i=1}^n M_i} \to 0.$$

We have $M \cong \bigoplus_{i=1}^n \frac{M}{U_i}$. Since $\frac{M}{U_i}$ is τ -hollow, thus τ -supplemented. So M is τ -supplemented; i.e., for any non- τ -dense submodule A of M, there exists A' in M such that A+A' is τ -dense in M and $A\cap A'$ is τ -small in A'. So $A\cap A'$ is τ -small in M, which implies $A\cap A'=0$. Consequently $A\oplus A'$ is τ -dense in M. From the above, we can say that each τ -closed submodule is τ -direct summand of M. Thus M is τ -semisimple. Now we want to see that M is τ -artinian. Suppose that M is not τ -artinian, then M contains a direct sum of infinitely many submodules; i.e., $\bigoplus_{i=1}^{\infty} N_i$ is τ -dense in M. By the Lemma 14, $C_{\tau}(M) \geq \sum_{i=1}^{\infty} C_{\tau}(N_i)$. Since $N_i \notin \mathcal{T}$, $C_{\tau}(N_i) \geq 1$. By the [3, 24.10] M is τ -semicocritical.

We also consider the following problem.

PROPOSITION 21. Let $C_{\tau}(M) = n < \infty$, and let $f: M \to M$ be epimorphism. Then we have the following statements:

- (a) ker f is τ -small in M;
- (b) if M is projective τ -torsionfree, then f is isomorphism.

Proof. (a) Note that $M/\ker f \cong M$, thus $C_{\tau}(M/\ker f) = C_{\tau}(M)$. By Proposition 15(6), ker f is τ -small in M.

(b) By the following short exact sequence and projectivity of M.

$$0 \to \ker f \to M \to M/\ker f \cong M \to 0.$$

ker f is a direct summand of M. So ker $f \oplus M_1 \cong M$, where $M_1 \cong M$. If $M \in \mathcal{F}$ and ker $f \neq 0$, then $C_{\tau}(\ker f) \neq 0$ by Lemma 14(1), which is a contradiction. So ker f = 0, which implies (b).

COROLLARY 22. Let τ be a faithful torsion theory and let R have finite τ -corank. Then an epimorphism $f: R \to R$ is an isomorphism.

DEFINITION. A left R-module M has property (P) with respect to a given torsion theory τ , if for any strictly descending chain of τ -closed submodules $M \supset U_0 \supset U_1 \supset U_2 \supset \cdots$, there exists i such that U_j is τ -small in M for all $j \geq i$.

For example, if $K = R/J_{\tau}(R)$ is semisimple τ -artinian, then KK has property (P) with respect to a torsion theory induced by $\bar{\tau}$ on $R/J_{\tau}(R)$.

LEMMA 23. Let M have property (P). If N is a submodule of M and N+X is τ -dense in M, then X contains a τ -supplement of M.

Proof. If N is a τ -small submodule of M, then X is τ -dense in M. So the τ -supplements of N is any submodule of X. If N is non- τ -dense non- τ -small submodule of M, we can find a non- τ -dense in M and N+X is τ -dense in M. If X is a τ -supplement of N, we are done; otherwise, we can obtain an X_2 . Continuously we have the chain $X \supseteq X_1 \supseteq X_2 \supseteq \cdots$. By property (P), we have only finitely many non- τ -small submodules. Then X must contain a τ -supplements of N. Finally if N is τ -dense in M and N+X is τ -dense, then any submodule of X is a τ -supplement of N.

COROLLARY 24. If M has property (P) then every non- τ -dense submodule of M has a τ -supplement.

COROLLARY 25. If M is τ -semicocritical, then every non- τ -dense submodule of M has a τ -supplement.

Now we want to give a relation between M with finite relative corank and property (P).

PROPOSITION 26. If M has property (P), then M has finite relative corank. On the other hand, if M is τ -supplemented, the converse is also true.

Proof. (\Rightarrow) Suppose that M has property (P) and $C_{\tau}(M)$ is not finite, then there exist a set of infinitely many τ -coindependent submodules $\{X_1, X_2, X_3, \cdots\}$. By Lemma 3, we may consider each X_i is τ -closed in M, and make a strictly descending chain of τ -closed submodules $M \supset X_1 \supset X_1 \cap X_2 \supset X_1 \cap X_2 \cap X_3 \supset \cdots$. By condition (P), there exists some k such that $\bigcap_{i=1}^k X_i$ is τ -small in M. By Lemma 3, $X_{k+1} + \bigcap_{i=1}^k X_i$ is τ -dense in M which implies that X_{k+1} is τ -dense in M. This contradicts that each X_i is τ -closed in M.

 (\Leftarrow) Let $\{U_1, U_2, \dots, U_n\}$ be a family of n τ -coindependent submodules of M such that $M/U_1, M/U_2, \dots, M/U_n$ is τ -hollow and $U_1 \cap U_2 \cap \dots \cap U_n$ is τ -small in M. For each $i = 1, 2, \dots, n$, we know that $U_i + S_{i,n}$ is τ -dense in M, where $S_{i,n} = \cap_{j \neq i} U_j$ and M is τ -supplemented. There exists $S_i (\leq S_{i,n})$, which is τ -supplement of U_i and $U_i + S_i$ is τ -dense in M and $U_i \cap S_i$ is τ -small in S_i .

$$S_i + \bigcap_{i=1}^n U_i = S_i + U_i \cap S_{i,n} = S_{i,n} \cap (U_i + S_i)$$

which is τ -dense in $S_{i,n} \cap M = S_{i,n}$. And by Lemma 3, $S_{i,n} + S_{2,n} + \cdots + S_{n,n}$ is τ -dense in M; thus $S_1 + S_2 + \cdots + S_n + \bigcap_{j=1}^n U_i$ is τ -dense in M. Since $\bigcap_{i=1}^n U_i$ is τ -small in M, we have that $S_1 + S_2 + \cdots + S_n$ is τ -dense in M.

Now we claim that each S_i is τ -hollow. $\frac{S_i}{S_i \cap U_i} \cong \frac{S_i + U_i}{U_i}$, which is τ -dense in τ -hollow module $\frac{M}{U_i}$ by the lemma 8(2), $\frac{S_i}{S_i \cap U_i}$ is τ -hollow and $S_i \cap U_i$ is τ -small in S_i implies that S_i is τ -hollow.

If there exists k < n such that $S_1 + S_2 + \cdots + S_k$ is τ -dense in M, then $\frac{S_1 \oplus S_2 \oplus \cdots \oplus S_k}{K}$ is τ -dense in M for some $K \subseteq M$.

$$C_{\tau}(M) = C_{\tau}\left(\frac{S_1 \oplus S_2 \oplus \cdots \oplus S_k}{K}\right) \leq C_{\tau}(S_1 \oplus S_2 \oplus \cdots \oplus S_k) = k$$

which contradicts $C_{\tau}(M) = n > k$. Thus the sume $S_1 + S_2 + \cdots + S_n$ is irredundant sum of τ -hollows and τ -dense in M implies that M satisfies the property (P).

If M has property (P), then there is n irredundant τ -dense sum of τ -hollow submodules H_i of M.

Following [4], we list the following concepts.

DEFINITION. A left R-module P is called strongly τ -projective if $Q_{\tau}(P)$ is a projective object in (R, τ) -Mod; concretely, for a given diagram

$$\begin{array}{ccc} & & P \\ & \swarrow & \bigvee_{f} & N' \end{array}$$

where N is a τ -closed module, N' is a τ -torsionfree module and \inf is τ -dense in N', can be completed commutatively. For a given left R-module M, an R-homomorphism $\varepsilon: P \to M$ is called τ -projective cover of M if P is strongly τ -projective and $\lim \varepsilon$ is τ -dense in M and $\ker \varepsilon$ is τ -small in P. Usually we denote (P, ε) as the τ -projective cover of M.

LEMMA 27. Let N be a τ -torsion submodule in M. Then N is τ -small in M.

Proof. If N is not τ -small in M, then there exists τ -closed submodule B in M such that N+B is τ -dense in M. $\frac{N+B}{B}\cong \frac{N}{N\cap B}\in \mathcal{T}$,

since homomorphic image of torsion module N. On the other hand, B is τ -closed in M. Thus $\frac{N+B}{B} \in \mathcal{F}$, so we have that N+B=B; i.e., $N \leq B$ which contradicts that B is τ -closed in M.

LEMMA 28. Let τ be a torsion theory on R-Mod. Let A and B be τ -closed submodules of M such that $Q_{\tau}(M) = Q_{\tau}(A) \oplus A_{\tau}(B)$. Then A and B are mutually τ -supplement in M, (i.e., $A \cap B$ is τ -small in A and B respectively and A + B is τ -dense in M.) If M is strongly τ -projective, then we have the converse also.

Proof. Consider an exact sequence

$$0 \to \frac{A+B}{\tau(A+B)} \to \frac{M}{\tau(M)} \to \frac{M/\tau(M)}{(A+B)/\tau(A+B)} \to 0.$$

Apply the left exact functor $Q_{\tau}(-)$:

$$0 \to Q_{\tau}(A+B) \to Q_{\tau}(M) \to Q_{\tau}\left(\frac{M}{A+B}\right).$$

By the hypothesis $Q_{\tau}(M) = Q_{\tau}(A) \oplus Q_{\tau}(B)$, we have that $Q_{\tau}(A+B) = Q_{\tau}(M)$; i.e., A+B is τ -dense in M. If $x \in A \cap B \setminus \tau(A \cap B)$, then $x + \tau(A \cap B)$ is a non-zero element of $\frac{A \cap B}{\tau(A \cap B)}$ that is contained in $Q_{\tau}(A \cap B) \subseteq Q_{\tau}(A) \cap Q_{\tau}(B) = 0$, which is contradiction. Thus $A \cap B$ is τ -torsion in A and B respectively. Applying the Lemma 27, we have that $A \cap B$ is τ -small in A and B respectively.

For the converse part, consider a τ -surjection $f:A\oplus B\to M$ given by f(a,b)=a-b. Then $\frac{A\oplus B}{kerf}\cong A+B$ is τ -dense in M. And $kerf=(A\cap B)\oplus (A\cap B)$, which is τ -small in $A\oplus B$, since M is strongly τ -projective $Q_{\tau}(kerf)$ is direct summand of $Q_{\tau}(M)$. So we have $\ker f\subset \tau(M)$. Thus $A\oplus B$ is τ -dense in M; i.e., $Q_{\tau}(A\oplus B)=Q_{\tau}(M)$.

PROPOSITION 29. If M has property (P) and is strongly τ -projective, then the sum representation of M in Proposition 26 is direct, and the direct summands S_1, S_2, \dots, S_n are unique up to isomorphism.

Proof. We prove by induction on n that the sum $S_1 + S_2 + \cdots + S_n$ is direct in M. It is clear from the construction of S_1, S_2, \cdots, S_n in Proposition 26 that $S_i \cap V_i$ is τ -small in S_i for every $i = 1, 2, \cdots, n$,

where $V_i = \sum_{j \neq i} S_j$. Also it is clear that $S_1 \cap V_1 \subset (S_2 \cap V_2) + \cdots + (S_n \cap V_n)$ which is τ -small in V_1 . Hence $S_1 \cap V_1$ is τ -small in V_1 . By Lemma 28, $S_1 \oplus V_1$ is τ -dense in M. We can check that V_1 satisfies the condition (P) and by the induction hypothesis $S_2 \oplus S_3 \oplus \cdots \oplus S_n$ is τ -dense in V_1 , thus $S_1 \oplus S_2 \oplus \cdots \oplus S_n$ is τ -dense in M.

COROLLARY 30. Let P be a τ -projective cover of a module M τ corank n. Then $C_{\tau}(P) = n$.

Proof. Consider a covering map $\varepsilon: P \to M$, then ker ε is τ -small in P and im ε is τ -dense in M. Applying the Isomorphism Theorem with Corollary 13 and Proposition 15(6), we have the following;

$$C_{\tau}(P) = C_{\tau} \left(\frac{P}{ker\varepsilon} \right) = C_{\tau}(im\varepsilon) = C_{\tau}(M) = n.$$

Recently, we found the following proposition which is essentially the same statement in [13]. But the method of the proof is different. So, we record it.

PROPOSITION 31. ([13, Theorem 14]). Let $A, B \leq M$ such that A + B is τ -dense in M and let (P, f) is τ -projective cover of M/A. Then A has a τ -supplement C in B.

Proof. Let $f: P \to M/A$ be a τ -projective cover. Define $g: B \to M/A$ by the mapping g(b) = b + A. By the strongly τ -projectiveness of P, there exists a homomorphism $h: P \to B$ making the following diagram commutative

$$P \xrightarrow{f} M/A$$

Let C=imh. We claim that (i) A+C is τ -dense in M and (ii) $A\cap C$ is τ -small in C. Then by the Lemma , we can say that C is a τ -supplement of A in B.

For (i), let $b \in B$, $x \in P$ such that g(b) = f(x) then $h(x) - b \in kerg = A \cap B$. Hence $b \in C + (A \cap B)$ implies that $B = C + (A \cap B)$ A + C = A + B is τ -dense in M.

For (ii), let $D \leq C$ such that $A \cap C + D$ is τ -dense in C, and let $D' = h^{-1}(D) \subset h^{-1}(B)$ if D' is τ -dense in P. Since the τ -density is preserved by homomorphism, we are done. Let $x \in P$, $h(x) \in C$ and $A \cap C + D$ is τ -dense in C. There exist a τ -dense left ideal I of R such that $Ih(x) \subseteq A \cap C + D$; i.e. $h(Ix) \subseteq A \cap C + D$. Note that $A \cap C \subseteq B \cap A = kerg$. $h(Ix) \subseteq kerg + D$ and so

$$Ix \subseteq h^{-1}(D) + h^{-1}(kerg) = h^{-1}(D) + ker(g \cdot h)$$

= $h^{-1}(D) + kerf$

i.e., $h^{-1}(D) + kerf$ is τ -dense in P.

REMARK. We denote $M^* = Hom_R(M,Q)$, where Q is τ -torsionfree injective cogenerator. Then for a given τ -hollow module H in M we have an essential submodule $H^{\perp} = \{f \in M^* | f|_H = 0\}$ in M^* , where M^* is considered as $T = End_R(Q)$ -module, by Page [6].

Thus we can state the following result.

PROPOSITION 32. M has property (P) if and only if M^* has the ascending chain conditions on essential submodules of M^* .

COROLLARY 33. M has τ -corank n if and only if M^* has uniform dimension n.

References

- T. Albu and C. Nästäsescu, Décomposition primaires dans les catégories de Grothendieck commutatives, J. Reine Angew. Math. 280 (1976), 172-196 and 282.
- N. V. Dung, D. V. Huynh and R. Wisbauer, Quasi-injective modules with acc or dcc on essential submodules, Arch. Math. 53 (1989), 252-255.
- 3. J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics 29, Longman Scientific and Technical, Horlow (1986).
- G. Hernández, G. Pardo and M. Hernandez, Semiperfect Modules Relative to Torsion Theory, J. of Pure and Applied Algebra 43 (1986), 145-172.
- W. G. Lau, Torsion Theoretic Generalizations of Semisimple Modules, Ph. D. Thesis, University of Wisconsin-Milwaukee, (1980).
- S. Page, Construction of Dense Ideals, Comm. in Algebra 19(5) (1991), 1343-1358.
- 7. Y. S. Park and S. H. Rim, On Relative Dual Goldie Dimensions, preprint (1992).

- 8. ____, On Relative Chinese Remainder Theorem, to appear.
- 9. T. Porter, A Relative Jacobson Radical with Applications, Colloquia Mathematica Soc. János Bolyai, 38. Radical Theory, EGER (Hungary) (1982), 445-447.
- B. Stenström, Rings and Modules of Quotients, Lecture Notes in Math. 237, Springer-Verlag, Berlin, (1971).
- 11. M. L. Teply, Finiteness Conditions on Torsion Theories, University of Granada Press, Granada (1984).
- 12. M. L. Teply, Modules Semicocritical with respect to a Torsion Theory and Their Applications, Israel J. Math, 54 (1986), 181-200.
- 13. L. Xin, Small Submodules Relative to a Torsion Theory, Comm. in Algebra 21(1) (1993), 3-23.

Department of Mathematics Kyungpook National University Taegu 702-701, Korea

Department of Mathematics Education Kyungpook National University Taegu 702-701, Korea