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HOLLOW MODULES AND CORANK
RELATIVE TO A TORSION THEORY

YOUNG So0 PARK AND SEoG-Hoon RiM

Let 7 be a given hereditary torsion theory for left R-module cat-
egory -Mod. The class of all 7-torsion left i2-modules, denoted by
7 is closed under homomorphic images, submodules, direct sums and
extensions. And the class of all 7-torsionfree left R-modules, denoted
by F, is closed under submodules, injective hulls, direct products, and
isomorphic copies ({3], Proposition 1.7 and 1.1().

Notation and terminology concerning (hereditary) torsion theories
on R-Mod will follow [3]. In particular, if 7 is a torsion theory on R-
Mod, then a left R-submodule N of M is said to be 7-closed (r-dense,
resp.) submodule of M if and only if M/N is 7-torsionfree (7-torsion,
resp.). A module M is called 7-cocritical if AL £ F and M/N € T for
each nonzero submodule N of M. A left ideai L of R is 7-critical if
R/ L is T-cocritical.

The purpose of this paper is to investigate some properties of 7-
hollow modules and their finite direct sum. We define the irredundant
number of this sum of 7-hollow submodules of given an R-module M
as relative corank of M. We study systematically some properties on
relative corank of M. Finally we give new class of modules that has a
relative supplement in the sense of Page [6].

Following Porter [9], we say ideals I, J are 7-comaximal if T + .J is
7-dense in R. Let I, I5,--- I, be ideals of F, they are pairwise 7-
comaximal in case I; + I} is 7-dense in R whenever ¢ # j. For example,
if each I; is a maximal 7-closed ideal of R or each I is a T-critical ideal,
then these ideals are pairwise T-comaximal.

LEMMA 1. ([8]) Let R be a commutative ring and {I;]i = 1,2,-++ ,n}
be pairwise T-comaximal ideals of R. Let M be any left R-module, then
we have the following:
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(1) I; + Njx:l; is T-dense in R for eacht =1,2,--- ,n.
(2) LM + (Njx;I;)M is 7-dense in M for each ¢ =1,2,--- ,n.

Using the above lemma, we can improve one result of Porter ([9], )
and get the following;:

THEOREM 2. . ([8]). Let R be a commutative ring and {Li|i =
1,2,--- ,n} be a finite family of pairwise T-comaximal ideals in R. For
any left R-module M, we have

(1) (I1=, I)M — (N2 I;)M is T-surjective and

(2) M — @, M/L;M is T-surjective with kernel N\7_;I; M.

We examine R-submodules {I;M|i =1,2,--- ,n} of M in the above
lemma and theorem, and consider the following concept in module
theoretic sense.

DEFINITION. Let M be a left R-module, a set of left R-submodules
of M {A;]z = 1,2,--- ,n} is called 7-coindependent in M if (i) each
A; is not 7-dense in M and (ii) 4; + Nj»;A; is 7-dense in M for each
1=1,2,--- ,n.

A family {A;|7 € I} of submodules of an R-module M is said to be

7-coindependent if every finite subfamily is 7-coindependent.

For example, given pairwise 7-commaximal ideals {L;jz = 1,2,---,
n}, of a commutative ring R, consider left R-submodules {L;M|i =
1,2,--- ,n}; then Lemma 1(2) shows that {L;M}: = 1,2,--- ,n} is 7-

coindependent in AJ.

For A C M, we define 7-closure of 4 in M (denoted by A°) by
A°JA = 1(M/A), and hence A is 7-closed in M.

At first we give a characterization of r-coindependency of a set of
countably many submodules of M.

LEMMA 3. Let {4;} be a countable family of non-r-dense sub-
modules of M, then the following are equivalent. When we denote
Sin =Nz A; for j =1,2,.- (g #1)

(a) For each n > 1, Ay, As,--- , A, are 7-coindependent;

(b) For each n > 1, A{, A3, - , A}, are T-coindependent;

(c) A1, As, A, -+ are T-coindenpendent;

(d) AS, A5, AS,--- are T-coindenpendent;

(e) For eachn > 1, A, + Sp.n 1s 7-dense in M;

(f) For each n > 1, Aj, + S;, , is T-dense in M;
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(g) For eachn > 1, 3" | Sin is T-dense in M;
(h) For eachn > 1, 31| 55, is T-dense in M.

Proof. From the definition, we can check easily the following (a) <
(¢), (d) = (b) and (a) = (e).
(a) = (b). Since each 4, is not 7-dense in M, AS # M (of course
Af i1s not 7-dense in M). Af + N,z AS is clearly 7-dense in M.
(b) = (a). By the hypothesis Af # M, each 4, is not 7-dense in
M.
(Ai +Njzad;)" = A7+ Ny )" = A7 4+ Njzi A5,

Thus (A; +MjxiA;)° is 7-dense in M, which means A; + NjziA4; = M.
The equivalences of (¢) & (d), (e) & (f) and (g) & (h) are similar
to (a) & (b).
(e) = (g). We prove this by induction on n. Assume that A, + S,
1s 7-dense in M and Z?;J Sin—1is 7-dense in M. Since Sy, », C Sin-1,
we have

n--1 n—1 n
Z Si,n—l = Z(Si,n + Sn,‘n,) = Z Si,n
=1 1=1 1=

by the modular law. So Z?:I S; n is 7-dense in Af.
(g) = (e). Since Z?:l Sin C A; + Sin, we have that A4; + S; , is

7-dense in M for every i = 1,2,--- . n.

For an example of a module which has countably many r-coindepen-
dent submodules, consider the left Z-module 7 (the integer set) and
usual torsion theory 7 (i.e., T = {0} and F = Z-Mod). Then the set
{pZ|p = all the prime numbers} forms a courtable 7-coindependent
family of zZ.

Following [4] or [6], we give the following;

DEFINITION. (1) The submodule N of M is 7-small in M if for a
submodule L of M, such that N + L is 7-dense in M, then L is 7-dense
in M.

(2) We call a left R-module M r-hollow if ¢very non-7-dense sub-
module of M is 7-small in M.

(3) If U is a submodule of M, we say the submodule X is 7-
supplement of U in M if U + X is r-dense in M, but U + Y is not
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T-dense in M for any proper submodule ¥ of X. L is called a 7-
supplement submodule if L is a 7-supplement of some submodule of
M.

(4) M is said to be r-supplement if for any two submodules U and
X of M, with U + X is r-dense in M, X contains a 7-supplement of
U.

REMARK. Any 7-torsion submodule of M is always 7-small in M.
In particular if M is 7-torsion, then M is automatically 7-hollow. If
M is non-7-torsion, we can mod out T-torsion part, which is always
7-hollow. Thus from now on we may consider 7-torsionfree, 7-hollow
module M mainly.

The following lemma provides a criterion to check when a submodule
is 2 7-supplement. The idea of the proof modified from Miyashita’s
work.

LEMMA 4. Let U and X be submodules of M. Then X is a 7-
supplement of U if and only if X NU is 7-small in X.

Proof. Assume that X is a 7-supplement of U, and let UNX + D be
7-dense in X. Thus U4+ UNX + D =U+ D is r-dense in M. By the
minimality of X such that U + X is 7-dense in M, D is 7-dense in X.
Hence UNX is 7-small in X. On the other hand, assume the condition
and let U + U’ be r-densein M with U' < X. Then U'4+UNX 15 7-
dense in X, since UN X is 7-small in X, U’ is 7-dense in X. Therefore
X is a 7-supplement of U.

Now we list some facts on 7-small submodules which will be used
freely.

LEMMA 5. Let A, B and C' be submodules of M

(1) If A is T-small in B and B < C, then A is 7-small in C;

(2) A is T-small in M, A < B and B is r-direct summand of M,
then A is T-small in B;

(3) If A is 7-small in M and ¢ : M — N is a homomorphism, then
@(A) is T-small in @(M).

(4) A is 7-small in B and B is t-dense in M, then A is T7-small in
M.

(5) A is T-dense in B and B is T-small in M, then A is 7-small in
M.
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(6) A is T-small in M if and only if A® is r-small in M.
Now we want to list some properties on 7-hollow modules.

DEFINITION. Following Garcia, M is said to be r-local if and only
there exists a unique maximal proper 7-closed submodule of M.

LEMMA 6. If M is a finitely generated r-hollow module, then either
J(M) =M or M is r-local.

Proof. Since M 1is finitely generated, there exist z,x,--- , Ty 1N
M such that M = Z:;] Rzx,;. If each Rz; is non-7-dense in M for
: = 1,2,--- ,n, then Z?:l Rz; 1s 7-small in M, which implies that
M = J.(M). On the other hand, if Rz; is non-r-dense in M for
J € J C{1,2,--- ,n} then 3, Ra; = J, (M) is maximal 7-closed
submodule of M so by [3,E24.5] A is 7-local.

COROLLARY 7. If R is T-hollow as left R-module, then R is T-local.

LEMMA 8. (1) If M is 7-hollow. then M/K is r-hollow for any
submodule K of M.
(2) If M/V is t-hollow and V is t-small in M, then M is 7-hollow.

Proof. (1) By the definition and Lemma 5(3).

(2) Suppose that M is not 7-hollow module. then there exists non-
7-dense, non-7-small submodule ' of M. Sitce V is 7-small in M,
K + V is non-r-dense in M; so L{,ﬂf 1s non-r-dense in % K+V
is non-7-small in M. Also, if K + V + L is 7-dense in M for some
L <M, K+ Lis r-dense in M because V is 7-small in M. Since K is

non-7-small in M, L cannot be r-dense in M: i.e., I‘{t"' 1s non-7-small

in %, which contradicts that M /V is r-hollow.

REMARK. We have an example : -%,L 1s 7-hollow but may not 7-
cocritical. Let R = Z and M = Z(p™®) and V = Z(2'), then A‘,i 13
7-hollow but not 7-cocritical for given usual torsion theory 7.

LEMMA 9. If X is 7-hollow submodule and t-dense in M, then M
1s T-hollow.

Proof. Let K be a non-r-dense submodule of M. Then K N X is
non-7-dense in X. Since X is 7-hollow, ' N X is a 7-small submodule
of X. Now by the Isomorphism Theorem I is r-small in i’ + X. On
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the other hand K + X is 7-dense in M, by Lemma 5(4), K is 7-small
in M. Thus we have the result.

LEMMA 10. Let {A;} be a countable family of T-coindependent sub-
modules of M and {B;} be a family of submodules of M such that
A; C B; and B;/A; is T-small in M /A, for each i. Then for eachn > 1,
N, Bi/ N, A, is T-small is M/ N}, A;.

Proof. Foreachn > 1, A; + S;,, is 7-dense in M for: =1,2,--- ,n
by the Lemma.

B;/A; =(A; + (Sin N B;))/A;
2(Si,n N Bi)/ Nizy A © Sin/ Nicy Ai

Thus (S:» N B;)/ Ny A; is m-small in S;n/ NI, A;i for every ¢ =
1,2,--- ,n. It follows that (31 ,(Sin N Bi))/ N, A; is 7-small in
St (Sia/ N, A;), which is 7-dense in M. Thus 3.1 ,(Sin N B;) =

Lewt=
N, B; implies the result.

Mainly, we study R-modules in which every family of r-coindepend-
ent submodules is finite. Examples of such modules include relative
artinian modules, relative hollow modules and relative local modules.
Also we can see in Proposition 16 a new class of modules satisfying
this finiteness condition.

LEMMA 11. Let M be an R-module such that every family of 7-
coindependent submodules is finite. Then for every 7-closed submodule
U of M, there exists a T-closed submodule V of M containing U such
that M/V is r-hollow.

Proof. If M /U is not 7-hollow, there exists a non-7-dense submodule
X1/U of M /U which is not 7-small in M /U. Thus there exists L, /U <
M/U. L—’—'{T’—\:‘- is 7-dense in %, but %l 1s not 7-dense in i\Ui U M/L is
not 7-hollow, pick a 7-closed submodule L, and X of M containing L
such that Lo + X5 is 7-dense in M; just as before we pick L; and X;.
By induction pick at the n-th step, in case M/L,_; is not 7-hollow,
r-closed submodules L, and X, of M such that L,, + X, is 7-dense
in M. To prove that this process must stop, it suffices to prove that
Ly,Ly,---, L, are t-coindependent for every n > .. First we prove
the following by induction on n,

© AXn+(LiN---NLy)is r-dense in AL
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Suppose that X,1 + (L1 N+ -N Ly_1)is 7-dense in M. Then

Xo+(Lin---NLy,) =X, +Xp_1 +(L1N---NL,)
:-Xn + (Ln N (J‘Y'n—l + (Ll AEEERE Ln—-l)))-

Now by the induction hypothesis, X, + (L;y N --- N L,) is 7-dense in
Xn+Ly. Since L, + X, is 7-dense in M, we have the result. For every
t=1,2,--- ,n, we have

L + Si,n DL+ (Lin---NL;1N Xi)
=Li+ X0+ (Lin---N L1 NX,)
=L;+X,n((Lyn---NLi-)NXi_y)

By ®,(LiN---NL,_1}+X;_; is 7-dense in M. Thus L;+ X, is 7-dense
in M implies that L; + S;, is 7-dense in M. Thus {Ly,Ls, -+, Ly}
are T-coindependent, and this proves the existence of a submodule V
containing U such that M/V is 7-hollow.

A left R-module M is called 7-semicocritical if M can be embedded
in a finite direct sum of 7-cocritical modules. The following seems
a generalization of 7-semicocritical module which is characterized in
Teply ([12], Proposition 1.1).

THEOREM 12. Let M be a non-r-torsion R-module such that every
family of T-coindependent submodule is finite. Then there exists an
integer n > 1 with the following (*)

(*) M has a family U;,U,, -+, U, of T-coindependent submodules
such that M /Uy, M/U,,--- | M/U, are r-hollow and Uy NU,N---NU,
is T-small in M.

Proof. By Lemma 11, M has a t-closed submodule U; such that
MUy is 7-hollow. If U} is not r-small in M, pick a 7-closed submodule
Vi such that U; + V} is 7-dense in M and a r-closed submodule U, of
M containing V; such that A//Us is 7-hollow If U; NUs is not 7-small
in M, pick a 7-closed submodule V, such that (U; NU;3) 4+ V5 is 7-dense
in M and a 7-closed submodule U of M containing Vs such that M/U;
is 7-hollow. Proceed by induction to obtain at the n-th step: in case
UinU;n---nUyu_q is not 7-small in M, choose a 7-closed submodule
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Va—1 and U, such that Vo C Uy, (U1 N+ NUn—1) + Vi is 7-dense
in M and M/U, is 7-hollow.

By Lemma 3, the family of 7-closed submodules Uy, Us, -~ , Uy is 7-
coindependent for every n > 1. Since M does not have infinite families
of 7-coindependent submodules, the above process must stop at the
n-th step for some n > 1.

DEFINITION. The number n defined in above theorem is called rel-
atwe corank of Mand it shall be denoted by C,(M) = n.

REMARK. If O (M) = 2, let {U;,U2} be r-coindependent submod-
ules satisfying the conditions in the definition. Then U; and U, are
mutually 7-supplement. For Uy + U, is 7-dense in M and U; N U, is
r-small in U; and U, respectively.

COROLLARY 13. Let C.(M) = n and N be a 7-dense submodule of
M, then C.(N)=n.

Proof. Let {Uy,Us,---,Uy,} be r-coindependent family in M satis-
fying the condition (*). Let’s consider a family {U;NN, /2NN, -+ U,N
N} in N, we can check that this family satisfies the condition (*) on

N.

At first we check the following elementary properties on C,(M) <
00.

LEMMA 14. For a left R module M, we have the following;
(1) C.(M)=0ifand only if M € T.

(2) C-(M) =1 if and only if M is r-hollow.

(3) N is T-direct summand of M, then C.(N) < C.(M).

Proof. (1) If M € T, then M does not contain any r-closed sub-
modules. So there is no r-coindependent submodule.

On the other hand if M ¢ 7, then 7(M) # M. By Lemma 11,
there exists a 7-closed submodule V of M such that M/V is 7-hollow.
If V is 7-small in M, then C,(M) > 1, contradicts the assumption
Cr(M) = 0. If V is not r-small in A, apply Lemma 6, there exists
K OV such that M/R is 7-cocritical, which means that I is 7-small
in M, i1e. Cr(M)>1. Thus we have the result by the contradiction.

(2) Suppose that C-(M) = 1. Then by the definition, every family
of 7-coindependent subset consists only one element, say {V}, M/V
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is 7-hollow, V' is r-small in A/. By the Lemma 8(2), M is r-hollow.
Conversely, we may assume that Af has finite 7-corank, say C (M) =
n. If M is not 7-hollow, then by the Lemma 11, there cxists a non-
7-small 7-closed submodule IV in M such that M/K is r-hollow. So
C,(M) > C,(M/L) =1, which is contradicts the hypothesis C.(M) =
1.

(3) There exists N' < M such that 7(AM) < N and N+ N' is 7-dense
in M. By the Corollary 13, C.(N + N') = (',(M) and N’ > (M) by
using the idea of the proof (2) in the dl)ove, we can see that CL(N') > 1
Thus C.(N) < C,(M).

PROPOSITION 15. Let M be a left R-module with relative corank
n. We have the following:

(a) Every t-coindependent fainily of submodules of A has at most
n elements.

(b) A submodule U of M is r-small in M if and only if there exists a
T-coindependent family Uy, U, -+, U, of submodules of M such that
M/U; is 7-hollow for each 1 = 1,2, - nanlU CcUynUsn---NU,.

Proof. (a)Let {N}, Na,--- Ny} beafami'y of 7-coindependent sub-
modules of Al. By Lemma 11, there exist {U;} such that N; C U, and
M/U; is t-hollow for each + = 1,2, -« k. T U, NUs N - N Uy is not
7-small in M, by Theorem 12, it can be lengthened to be so; hence
kE<n.

(b) Since C(M) = n, let {V|, V5, -V, } satisfy condition (*) in
Theorem 12.

(=) Let U be a 7-small in M, and let U; = U + V. Then
{Uy,Us,--- , Uy} satisfies the condition.

()Take U =U,NU;0---0T,.

PROPOSITION 16. If a 7-torsion free lef: R-module M has a de-
composition M = Ny & Ny, then C (M) = Z.(Ny) + C.(N3), in case
C.(M) <

Proof. We may denote that C(Ny) = n, C(N,) = n.. By defini-
tion we can choose {U;}, ¢ = 1.2, ,n ({V;},; = 1,2,- - mresp.) be
non-7-dense submodules of N{(N resp.) satisfying the condition (*) in

Theorem 7. Consider a family {U; + No, V; + N1} where i = 1,2, .\ n
and 7 =1,2,-- ,m.

(Ui + N} + (Mxsti(Uk + Na) 0 (AP (V) 4+ N 1)) D U, 4 Na + Ny U
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Now by (*), we can see that (U;+N2)+(Nez:(Ur+ N2 )N(NTL, (Vi +N1))

is 7-dense in M.

M = N & Vo it ﬁ—l- : T-hollow

U+ N, Ui+ Ny U;

thus M/(U; + N;) is 7-hollow. Similarly M/(V; + N1) is 7-hollow.

(NE (Ui + N2)) 0 (NT2 (Vi + Ni)) =(0ie, Ui + N2) N (N5, V; + Ny)
- mi:l Ui + mj=1VJ

which is 7-small in Ny + Ny, so (N, (Us + N2)) N (N7, (V; + N1)) is
r-small in M. Thus C.(M)=n+m.

COROLLARY 17. Let Ny, N,,--- , N\ be T-coindependent family of
submodules of an R-module M such that N¥_, N; = 0. Then

k
C(M)=>_C.(M/Ny).

Proof. For any two T-coindependent submodules Ny and Nz of M,
there exists an exact sequence,

M M M M
0o ——m—m s —Pp— 5 —— =0
NyNn N, N1 N N1+ N2
Thus NAer 1s 7-dense in M e ,]\‘,1 Since {N1,Ny,--- Ny} is a 7-
comdependent family, 1nduct1vely we have that —1]‘—1N—— i1s 7-dense in
1==1
M

®r, N Since N¥_, N; = 0, we can say that M is 7-dense in &5 1N
By Corollary 13 and Proposition 16, we have the following;

C.(M) = le)—20<



Hollow modules and corank relative to a torsion theory 449

ProPoOSITION 18. C (M) = n is equivalent to (**):

(**) There exist a family Hy, Hy,--- ,H, of 7-hollow R-modules
and f : M — ®]_, H; such that imf is 7-dense in &}, H; and kerf is
T-small in M.

Proof. (=) Since C.(M) = n, there exists 7-coindependent family
{Uy,Uz,--- U,,} satisfying (*). Consider an R-homomorphism f :
M — &L, l\crf = N, Ui is m-small in M. imf 2 Sl s 7-
dense in B, 'U_. in the proof of Corollary 17.

(«=) By hypothesis M/ker f is 7-dense in P}, H;, where each H; is
7-hollow module. By Lemma 14(1), and Proposition 16,

Co(M) = Co(M/kerf) = Co(@]o, Hi) = Y Co(H) =n.

LEMMA 19. If C,(M) = n < oo and IV is 7-supplemented in M,
then C,(M) = C(K)+ C.(M/L).

Proof. Since I is T-supplemented, there exists a 7-closed submodule
W in M such that K + W is 7-dense in M and I\ N W is 7-small in
K; thus K N W is 7-small in M. Using the short exact sequence,

M A M M
e — — = —
Knw LW L +W

We have e ]XW o 1\ & H L and since I\ NWis r-small in M, C (M) =
C- (KnW) =C, (]]”)+C' ( W) And W is isomorphic to —-—;1{7— which

is 7-dense in #5. Thus we have C, () = (', (2%) = C-(K), using

the fact K NW is 7-small in . We have the result C,.(M) = C.(K)+
C.(M/K).

ProposITION 20. If M € F and C.(M) = n, then M/J.(M) is
T-semicocritical.

Proof. If J.(M) =0, since C(M) = n there exists a family
{U1,Usz,-+- Uy} T-COindependem submodules of M such that M /U, is

— 0.

T-hollow for each ¢ = 1,2, .- ,n and NI, U; is 7-small in M. By ([3],
24.3) J (M) DN, U;; so ﬂ” Ui = 0. Consider an exact sequence
M A
0 1 , ’\[ AL 0.

; - TE‘ 0 ar
ﬂl'-':]l/’i U, Zi:l M,;
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We have M = ¢ :-‘zl-(l—%. Since {‘-,—{- 1s 7-hollow, thus r-supplemented.
So M is T-supplemented; i.e., for any non-7-dense submodule A of M,
there exists A’ in M such that A + A’ is 7-dense in M and AN A’ is
7-small in A’. So AN A’ is 7-small in M, which implies A N A" = 0.
Consequently A @ A’ is 7-dense in M. From the above, we can say
that each 7-closed submodule is 7-direct summand of M. Thus M
is 7-semisimple. Now we want to see that M is 7-artinian. Suppose
that A is not 7-artinian, then M contains a direct sum of infinitely
many submodules; i.e., &2, N; is 7-dense in M. By the Lemma 14,
Cr(M) > 372, C-(Ny). Since N; ¢ T, C.(N;) > 1. By the [3, 24.10]

M is T-semicocritical.
We also consider the following problem.

PROPOSITION 21. Let C.(M) = n < oo, and let f : M — M be
epimorphism. Then we have the following statements:

(a) ker f is 7-small in M ;

(b) if M is projective T-torsionfree, then f is isomorphism.

Proof. (a) Note that M/ker f = M, thus C.(M/ker f) = C,(M).
By Proposition 15(6), ker f is 7-small in M.
(b) By the following short exact sequence and projectivity of M.

0— ker f - M — M/ker f = M — (.

ker f is a direct summand of M. So ker f& M; = M, where M, = M.
If M € F and ker f # 0, then Cr(ker f) # 0 by Lemma 14(1), which

is a contradiction. So ker f = 0, which implies (b).

COROLLARY 22. Let 7 be a faithful torsion theory and let R have
finite 7-corank. Then an epimorphism f : R — R is an isomorphism.

DEFINITION. A left R-module M has property (P) with respect to a
given torsion theory 7, if for any strictly descending chain of 7-closed
submodules M D Uy D U; D Uy D ---. there exists ¢ such that U, is
7-small in M for all 7 > 1.

For example, if ' = R/J.(R) is semisimple 7-artinian, then ;K
has property (P) with respect to a torsion theory induced by 7 on

R/J.(R).
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LEMMA 23. Let M have property (P). I' N is a submodule of M
and N + X is 7-dense in M, then X contains a 7-supplement of M.

Proof. If N i1s a r-small submodule of M, then X is 7-dense in M.
So the r-supplements of N is any submodule of X. If N is non-7-
dense non-r-small submodule of M, we can find a non-7-dense in M
and N + X is 7-dense in M. If X is a 7-supplement of N, we are
done; otherwise, we can obtain an X2. Continuously we have the chain
X 22Xy 2 X2 2 - -. By property (P), we have only finitely many
non-7-small submodules. Then X must contain a 7-supplments of N.
Finally if N is 7-dense in A and N 4+ X is 7-dense, then any submodule
of X is a m-supplement of N.

COROLLARY 24. If M has property (P) then every non-7-dense
submodule of M has a 7-supplement.

COROLLARY 25. If M is 7-semicocritical, then every non-r-dense
submodule of M has a T-supplement.

Now we want to give a relation between A with finite relative corank
and property (P).

PROPOSITION 26. If M has property (P), then M has finite relative
corank. On the other hand, if M is 7-supplemented, the converse is
also true.

Proof. {=) Suppose that M has property (P) and C-(M) is not
finite, then there exist a set of infinitely many 7-coindependent siub-
modules { X, X5, X3, -+ }. By Lemma 3, we may consider each X; is
r-closed in M, and make a strictly descending chain of r-closed sub-
modules M 5 X; D X;NXy, DX NX,N Xy D, By condition (P),
there exists some k such that N*_ X, is 7-small in M. By Lemma 3,
Xig1 + l’“lleXi is 7-dense in M which implies that X'y, is 7-dense in
M. This contradicts that each X; is 7-closec in A.

(<) Let {Uy,Us,--- U, } be afamily of n r-coindependent submod-
ules of M such that M /U, AM/U,. -+, M/U, is 7-hollow and Uy NU, N
---NU, 18 7-small in M. Foreach« =1,2,---  n, we know that U; 4+ 5; ,,
is 7-dense in M, where S; , = N;%;U; and M is 7-supplemented. There
exists S;(< S;n), which is 7-supplement of i7; and U; + 5 is 7-dense
m M and U; N S; is 7-small in S;.

Si + ﬁzlz]['ri = Szf + l."vz N Si.n = S?.n N (U'7 + 51)
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which is 7-dense in S;n "M = S;,. And by Lemma 3, Sin + S2,n +
-+ San is 7-dense in M; thus Sy + S+ -+ S, +N7=,U; is 7-dense
in M. Since N, U; is 7-small in M, we have that S; + S +---+ S,
is 7-dense in ]\4
Now we claim that each S is T-hollow. S—i'7 x —("J'—Ul, which is

r-dense in 7-hollow module & —U— by the lemma 8(2), ?‘r\JL_r 1s 7-hollow
and S; NU; is 7-small in S; implies that S; is 7-hollow.
If there exists & < n such that S; + Sz + -+ + Sk is 7-dense in M,

then wﬂ is 7-dense in M for some K C M.

CT(M):CT(SlEBSzEB---EBSk)

K

which contradicts C.(M) = n > k. Thus the sume S;4- S+ -+ S, is
irredundant sum of 7-hollows and 7-dense in M implies that M satisfies
the property (P).

If M has property (P), then there is n irredundant 7-dense sum of
7-hollow submodules H; of M.

LCH(S1D5® --S:)=Fk

Following [4], we list the following concepts.

DEFINITION. A left R-module P is called strongly 7-projective if
Q-(P) is a projective object in (R,7)-Mod; concretely, for a given
diagram

P
-
IV ———t .7\’)’ !
f

where N is a 7-closed module, N' is a r-torsionfree module and imf
is 7-dense in N', can be completed commutatively. For a given left
R-module M, an R-homomorphism ¢ : P — M is called 7-projective
cover of M if P is strongly 7-projective and ime is 7-dense in M and
kere is 7-small in P. Usually we denote (P, <) as the 7-projective cover

of M.

LEMMA 27. Let N be a 7-torsion submodule in M. Then N is
T-small in M.

Proof. If N is not T-small in M, then there exists 7-closed submod-
ule B in M such that N + B is r-dense in M. &g_@ o er\:B e T,
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since homomorphic image of torsion module N'. On the other hand, B
is 7-closed in M. Thus [—VLB € F, so we have that N + B = B: le.,
N < B which contradicts that B is 7-closed in M.

LEMMA 28. Let 7 be a torsion theory on R-Mod. Let A and B be
T-closed submodules of M such that Q.(M) = - Q-(A)® A (B). Then
A and B are mutually 7-supplement in M, (ie., AN B is r-small in
A and B respectively and A + B is r-dense in ]\I) If M is strongly

T-projective, then we have the converse also.

Proof. Consider an exact sequence

A+ B M M/7(M)
(A+B) (M) (At B)r(A+B)

Apply the left exact functor Q. (-

: A
OHQ4A+ByﬁQ4MyﬁQ4A+B)
By the hypothesis Q. (M) = Q. (A)®Q.(B), we have that Q-(A+B) =
Qr(M); ie, A+ Bis r-dense in M. If 2 € AN B\t(4 N B), then

z + 7(A N B) is a non-zero element of (4/{;5}) that is contained in

Q-(ANB)C Q-(4)NQ.(B) = 0. which is contradiction. Thus AN B
is T-torsion in A and B respectively. Applying the Lemma 27, we have
that AN B is r-small in A and B respectively.

For the converse part, consider a 7-surjeciion f:A43B - M
given by f(a,b) = a —b. Then %—‘%—a = A+ L is t-dense in M. And
kerf = (AN B) & (AN B), which is 7-small in A @& B. since M is
strongly 7-projective Q,(kerf) is direct summand of @-(M). So we
have kerf C 7(M). Thus A4 B is r-dense in M: ie.. Q- (Ad B) =
Q- (M

PROPOSITION 29. If M has property ( P) and is strongly T-projective,

then the sum representation of M in Proposition 26 is direct, and the
direct summands S,,S,,--- , S, are unique up to isomorphism.

Proof. We prove by induction on n that the sum S1+ S+ + 85,
is direct in M. It is clear from the construction of 51,5, - ,Sn in
Proposition 26 that S; NV, is r-small in S; for every 1 = 1,2,--+ | n,



454 Young Soo Park and Seog-Hoon Rim

where V; = 3~ ., Sj. Also it is clear that S1 N V1 C (52N Vay+ -+
(Sn N V) which is 7-small in V1. Hence S§; NV is 7-small in Vi. By
Lemma 28, S; © V) is 7-dense in M. We can check that V3 satisfies
the condition (P) and by the induction hypothesis Sy @ S3 @ -+ & Sp
is 7-dense in Vi, thus §; ® S, @ --- & S,, is 7-dense in M.

COROLLARY 30. Let P be a T-projective cover of a module M 7-
corank n. Then C,(P) = n.

Proof. Consider a covering map ¢ : P — M, then ker ¢ is 7-small in
P and ime is 7-dense in M. Applying the Isomorphism Theorem with
Corollary 13 and Proposition 15(6), we have the following;

C.(P) = c( P ) — C,(ime) = Co(M) = n.

kere

Recently, we found the following proposition which is essentially the
same statement in [13]. But the method of the proof is different. So,
we record it.

ProposITION 31. ([13, Theorem 14]). Let A,B < M such that
A+ B is t-dense in M and let (P, f) is T-projective cover of M/A.
Then A has a 7-supplement C in B.

Proof. Let f : P — M/A be a 7-projective cover. Define g : B —
M/A by the mapping ¢g(b) = b+ A. By the strongly 7-projectiveness
of P, there exists a homomorphism h : P — B making the following
diagram commutative

B
h
/

P o— MA

Let C = imh. We claim that (i) A + C is 7-dense in M and (ii)
AN C is 7-small in C. Then by the Lemma , we can say that C is a
T-supplement of 4 in B.

For (i), let b € B, € P such that g(b) = f(x) then h{z) - b €
kerg = AN B. Hence b € C + (AN B) implies that B = C + (AN B)
A+ C=A+ Bist-densein M.
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For (i), let D < C such that AN C + D is 7-dense in C, and let
D' = h~Y(D) c h™Y(B) if D' is 7-dense in P. Since the T-density is
preserved by homomorphisni, we are done. Let r € P, h(x) € C and
ANC + D is 7-dense in C. There exist a 7-dense left ideal T of R
such that Th(zx) C ANC + D; ie. h(Iz) € ANC + D. Note that
ANCCBNA=kerg. h(Ix) < kerg + Dand o

Is Ch YD)+ hY(kerg) =h~'(D) + ker(g - h)
=7 (D) + kerf

i.e., YD) + kerf is 7-dense in P.

REMARK. We denote M* = Homp(M, Q), where @ is 7-torsionfree
injective cogenerator. Then for a given 7-hollow module H in M we
have an essential submodule H+ = {f ¢ AM*|flg = 0} in M*, where
M?* is considered as T = Endg(Q)-module, by Page [6].

Thus we can state the following result.

PROPOSITION 32. M has property (P) if aad only if M* has the
ascending chain conditions on essential submocules of M*.

CoROLLARY 33. A has m-corank n if and cnly if M* has uniform
dimension n.
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