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DOUBLE ZEROS OF THE SZEGO KERNEL

MoonYUN LEE

1. Introduction

When we study complex analysis, we often encounter multi-valued
functions. Provably the best known example would be /z, which has
a singularity at the origin. In general, let Q; and ©; be domains in
C, and let T be a subvariety of 7 x Q2. Let m; : I' — ; be the

projections, ¢ = 1,2. Then the multi-valued map
f: Tf'f_)ﬂ'l—.l :Ql d Q2

is called a holomorphic correspondence. If 7y and w, are both proper,
then f is called proper. K. Stein pioneered in the study of proper
holomorphic correspondences (See [7]). In recent years, E. Bedford
and S. Bell studied in this area (See [2], [3]).

In this paper, we want to study the zero set of a Szegd kernel,
which gives a proper self-correspondence of a domain. It is a natural
object of the domain in a sense that it is preserved by a biholomorphic
map. All domains in this paper are assumed to be bounded, finitely
connected in C with nondegenerate boundary. Let © be a domain with
C! boundary. Let A(Q) = C(Q)NH(Q). Let H(bS}) be the closure of
A(Q) = A(2)|sq in the L2(b2) space. Then the orthogonal projection
P L2(Q) — IT?(bQ) is called the Szegd projection. Each element f
of H?(bQ) has a holomorphic extension to §. The Szegé kernel S(z,w)
is defined to be the kernel function that satisfies

(P)(=) = / S(=,0)f(C)dar O,
1181

for z € Q, f € L*(bQ). It is well-known that S(z,w) = S(w,z) and

S(z,w) is holomorphic in the first variable. The zero set of the Szegd
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kernel 1s called the Szegé variety. The Szego variety is defined to be
irreducible if the analytic subvariety {(z,w);(z,w) € Szegd variety} is
irreducible. Suppose f : ; — Q5 is biholomorphic and §;, 2, have
C?! boundary and f, f' extend continuously to Q1. The Szegd kernels
of two domains are related by the formula

= SIS, Fo /1 w) (1)

for z,w € @ x Q; — D, where D = {(z,2);z € b2, }. Since f' is never
equal to zero for z € Qj, the above equation shows that the Szegé
variety is invariant under a biholomorphic map.

Suppose £ is a n-connected domain with real analytic boundary.
For any fixed w € Q, S, (z) = S(z,w) has n — 1 zeros in €1, counting
with multiplicity. If O is a sufficiently small neighborhood of €, then
Sw(z) is a well-defined holomorphic function on O and it does not have
a zero on O — Q. Denote the zeros of S, (z) by Z;(w),..., Zu_1(w).
Then the multi-valued map

w— Zi(w),..., Zn_1(w)

is a proper anti-holomorphic correspondence, which means that it is
a complex conjugate of a proper holomorphic correspondece. Let us
denote the boundary curves of Q by v9,71,...,¥n-1. When w con-
verges to 7o, all the zeros of S(z,w) become simple zeros. Moreover,
for y =0,1,...,7n — 1, we can find neighborhoods O;’s of ¥;’s so that
Zi : Qo — Qi is a conjugate-biholomorphic map (in other words, it is a
complex conjugate of a bilolomorphic map), and Z(vo) = 4+ for each
k=1,...,n —1. For the proof of the above facts, see [5]. When
is 2-connected, Z; is a conjugate-bihiolomorphic map from 2 to itself.
So, our main interest is the case n > 3.

2. Double zeros of the Szeg6 kernel
In this chapter. our goal is to prove Theorem 1, our main theorem.

Later, we wil see that we can weaken the hypothesis of Theorem 1
considerably.
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Suppose 2 is a n-connected domain (n > 2) with real analytic
boundary curves

YoV 1+
Let v =0 + -+ vu-1. Let §'(z,w) = 85(z,w)/0=z. Define

L (7 w) 5
i) = 5 [ gl @)

for w € Q, for k =1,...,n — 1. Since S(z,w) and S'(z,w) are anti-
holomorphic in w, gi(w)’s are anti-holomorphic functions. By the ar-
gument principle, we have gg(w) = Zi(w)* + -+ 4+ Z,_1(w)*. Since
each Z;(w) extends anti-holomorphically to soine neighborhood of ~,,
gk(w) also extends. By Newton’s identity, any symmetric polynomial
in Z;(w)’s can be expressed as a polynomial in gg(w)’s.

Defind the Szegd polynomial H{z,w) by

n—1

H(z,w) = H(: — Zj(w)) = N hpa(w 2" T 4 - 4 holw).

i=1

Each hy(w) is a polynomial in g4(w)’s, so hy(w) s are anti-holomorphic
in some neighborhood of ©. The Szegd kernel S(z,w) and the Szegd
polynomial H(z, w) define the samne zero set in { x 2. The discriminant
o(w) of H(z,w) is defined by é(w) = [],;(Ziw) - Z(w))? Tt is
well-known that the discriminant of a polynomial can be expressed
by addition and multiplication of its coefficients. So é(zw) is an anti-
holomorphic function in some neighborhood of €. If 6(wg) = 0 for some
6(wo) € , then S(z,wo) would have a double zero. When w € b§2,
Z;(w)’s are all different from each other. So é(:v) # 0 for w € bQ. By
calculating the argument increase or decrease @long the boundary, we
can find out the number of zeros of & in Q.

THEOREM 1. Suppose ) is an n-connected domain with real ana-
Iytic boundary in C, n > 3. Then the discrizninant é(w) has 2(n —
1)(n — 2) zeros in 2, counting with multiplicity

We denote the boundary curves of Q@ by %0, 91, ..., ¥n—1. We assume
J Y 0 1, 'n
that vy is the outer boundary. We give the wsual orientation to the
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boundary curves, so we trace o counter-clockwise, while v1,...,vn-1,
clockwise. We need two lemmas to prove theorem 1. For convenience,

we will calculate the number of zeros of §(w), the complex conjugate
of 6(w).

LEMMA 2. With the above assumptions, fvo Xl(w)/g(w)dw =0.
Proof. By the Leibniz rule,

By, oy v [ Ty,

Yo (5(10) 1<i<j<n—17 70 (Z.(’U)) - Zj(w))
When w moves along 7 counter-clockwise, Z;(w) moves along J; clock-
wise for : = 1,...,n — 1. For any fixed point z; on ¥;, we can define a

single-valued log function on z; —%,. This is posible because the curve
7; does not circle around z;. Similarly, for any point z; on ¥;, we can
define a single-valued log function on ¥; — zj. Fix a point wo on 7.
Now, define Log(Z;(w) — Z;(w)) on o by
Log(Zi(w) — Z j(w))
=log(Zi(wo) — Z;(wo))
+ (log(Zi(w) = Zj(wo)) — log(Z i(wo) — Z(wo)))
+ (log(Zi(w) — Z;(w)) — log(Zi(w) — 71(100)))
Here, . .
log(Zi(w) — Zj(wo)) — log(Zi(wo) — Z ;(wo))
is defined as a log function on ¥; — Z;(wy), where Z;(wp) is a fixed
point on 7;. Similarly,
log(Z(w) = Z;(w)) = log(Zi(w) = Z (o))
is defined as a log function on Z;(w) — 5, where Zi(w) is a fixed

point on 7;. Since the log functions on ¥; — z; and z; — ¥, are single-
valued, When _w circles around 7o and returns to the starting point,

Log(Z;(w) — Z ;(w)) also returns to the same value. So Log(Z; — Z)
is a single- valued function on vo. Hence,

Z(w)~ 2 - =

(Zifr) = Z;(w)) dw = [Log(Z; — Z;)]3° = 0.

v (Zi(w) — Z5(w))
Thus, f_m 5 w)/8(w)dw = 0.
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LEMMA 3. With the same assumptions, for [ =1,...,n -1,

3 ,
/ ._(‘w)dw = 2(n — 2)(271).
mt 6(w)
Proof. For w € v, we denote zeros of S, () by

Zo(w), ..., Z11(w), Zip1(w), ..., 2,4 (w),
where each Z;(w) is on v;. By the Leibniz rule,

/7, 33’((:;)) . / _72_ 77< D o

0<]<k<n 1
J.k#l

As in the proof of lemma 2, for all j,& > (0, we can define a single-
valued log function Log(Z; — Zk) on . So,

))

(Z;(w) — g dw =20
Z

k(u

v (Z i) = Zp(w
for all 7,k > 0.

Now, for any fixed point zx on F,, we define a log function on ¥, — zx.

Since ¥, circles around zj, this log function is not single-valued. It

increases by 27¢ when a point circles around 7, once. Fix a point wyq

on ;. Define Log(?o(w) — Zi(w)) on v by
Log(Zo(w) — Zi(w))
=log(Zo(wo) — Zi(wo))
+ (log(Zo(w) ~ Zk{w))
Zy

_ ]Og(70(11,>g) - TZ‘k(wU)))
+ (log(_Z‘o(”tU)

(w)) ~log(Zo(1w) = Zr(wo))).

Remember that

log(Eo(zu) —~ Zy(wo)) — log(Zo(wn) — Zi(wo))
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is defined as a log function on J; — Zx(we ), and it is not single-valued.
It increases by 27i. While

log(Zo(w) — Zi(w)) — log(Zo(w) — Z1(wo))

is defined as a log function on Zo(w) — ¥, and it is single-valued. So,
Log(Zo(w)—Z(w)) will increase by 27t when w circles around +; once.
Hence,

(Zo(w) = Za(w))
w (Zo(w) = Ze(w))

dw = [LOg(—Z—O(w) - _Z—’»(w))] .

w .
= 2m1.
wo

Thus, fm —5’(10)/3(w)dw =2(n - 2)(2m1).

Proof of theorem 1. By the above lemmas,
/-5_'(10')/.5(10:)(110 =2n — 1)}{(n — 2)(271).
.

Since v = yo 4+ 71+ - - +vn-1 is homologous to zero in 2, we can apply
the argument principle. See p.152 of [1]. So & has 2(n — 1)(n — 2) zeros
in 2, counting with mutiplicity. So é has 2(n — 1}{(n — 2) zeros. The
proof is completed.

It is well-known that for any finitely connected domain £2; with non-
degenerate boundary components, there exists a biholomorphic map
f: 1 — Q5 so that €27 is a bounded domain with real analytic bound-
ary (See p.252 of [1]). When bQ; is C* smooth, f and its derivatives
of order up to k —1 extend continuously to ;. Because of the formula
(1) of chapter 1, Theorem 1 is true when b$) is C*. So, the Szegé kernel
S(z,w) of a domain §? with connectivity n > 3 has a double zero at
some point. When the boundary of € is so bad that the Szegé kernel
is not defined at all, we can still get some results. find a domain Q,
with real analytic boundary which is biholomorphic to 2, and apply
Theorem 1 to ;. It shows that any domain Q with connectivity n > 3
has some special points, which are natural objects of the domain in a
sense that it should be preserved by biholomorphic maps. We conclude
this chapter with a lemma that we will need in the next chapter.
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LEMMA 4. Let §2 be a domain with connectivty n > 2. Let f be an
automorphism of ) that sends each boundary component to a different
boundary component. Then f — id has two zeros in €.

Proof. We may assume that  has a real analytic boundary. Let
¥ = + -+ + Yn-1 be the boundary components of 2, where ¢ is
the outer boundary. We can calculate the argument increase of f — id
along v. Use exactly the same method as that of Lemma 2 and lemma
3. Only on v and f~*(99), f — i¢d has argument increase of 2mi. So
f — id has two zeros in 0, counting with multiplicity. The proof is
completed.

3. When Q is 3-connected.

All domains in this chapter are assumed to be 3-connected. Let Q2
be a domain with the Szegé kernel S(z,w). Let {Z1, Z2} be the proper
correspondence defined by S(z.w). By the remarks following the proof
of Theorem 1, we can find a point a in Q so that Z; and Z; have the
same value at a. We should consider two different cases.

(1) Z; and Z; are single-valued functions near a.

(2) Z, and Z; are not single-valued near a. By anti-analytic contin-
uation around a, Z; becomes Z, and Z, becornes Z;.

First, let us study the case (1). Let b = Zy(a) = Zy(a). It is easy
to see that (0Z;/8%)(a) # 0 for i = 1,2. Indeed, if (8Z;/9%)(a) = 0,
then the proper correspondence {Z, 22} = {Z7',Z;'} would map a
point near b to more than two points near a, which is a contradiction.
So, Z; and Z; are conjugate-biholomorphic near a. By the Theorem
1, (Z1 — Z3)? has 4 zeros. Since Z; — Z, has zeros at a and b, it cannot
have any other zeros on Q. So, Z; and Z; do not have any singular
points, in other words, Z; and Z, are locally conjugate-bihlomorphic
at any point.

Let o, 41,72 be the boundary components of . Since Z, and Z, are
conjugate-biholomorpic near v, for j = 0,1, 2, we can define Z; and Z,
as single-valued functions on £ by the Monodromy Theorem. Since Z;
and Z; are locally conjugate-biholomorphic, they should map Q onto
2. Since {Zy, Z,} maps a point in  to two points, Z; and Z; should
be one-to-one. So Z; and Z, are conjugate-biholomorphic self maps of
Q. We may assume that Z; maps 7o to y1, ¥1 to 2, 72 to v. Then 2,
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should send o to 2, v2 to 1, 71 to y0. So, Z102Z; = identity because
it is a biholomorphic map of 2 that does not move the boundary (See
[6]). It is easy to see that Z; o Z; is an automorphism of order 3 with
a and b as fixed points. Because of the Lemma 4, it does not have any
other fixed point.

THEOREM 5. Let Q be a 3-connected domain. Suppose the Szegé
variety of Q is reducible. Then the zero functions Zy, Z; are conjugate-
biholomorphic self maps of Q, and Z; = Z;'. There exist two points a,
b such that Z;(a) = b, Z;(b) = a fori = 1,2. Z;0Z; is an automorphism
of order 3 that has a, b as fixed points.

Proof. This theorem follows by combining the above results.
Next, let us study the case (2). We need a lemma.

LEMMA 6. Suppose § is a 3-connected domain. Let a be a point
of Q such that S,(z) has a double zero, say, b. If the Szegé variety is
irreducible, then a is not a double zero of Sy(z).

Proof. Assume that a is a double zero of Sp(z). Let
o(t):[0,1] = Q

be a curve that circles around a once in counter-clockwise direction
and

1 2
0(0)=0o(1) €0, o(3) €m, o(3) €
where g, 71,72 are boundary components of §2. Define o : [1,2] — Q
by o(t + 1) = o(t). Then, the curve

Zioo:[0,2] > Q

should circle around b twice clockwise. By considering the fact that
{Z1,2Z,} should map a boundary component to different boundary
components, we see that on some interval [k/3,(k+1)/3], Z; 00 should
move from some boundary component to the same boundary compo-
nent. This is a contradiction to the fact that {Z;, Z;} is the inverse
of {Z1,2Z,} and each Z; is conjugate-biholomorphic near the boundary
components. The proof is completed.
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When the Szegd variety is irreducible, we need to be a little bit
careful to count the zeros of Z, — Z,. The above lemma shows that
when o circles around a singular point a twice, Z; o ¢ circles around
Zi(a) once. So Z; behaves like / at the origin. Thus, at each singular
points, {Z; — Z2)? has one zero. So, there exist four singular points of

{Z1,Z;} in Q.

LEMMA 7. Suppose the Szegd variety of QU is irreducible. Then Q
cannot have an automorphism of order 3.

Proof. Suppose 2 has an automorphism f of order 3. Then f should
send each boundary component to a different boundary component
(See [6]). So f has at most 2 fixed points. Let aj,asz,as,aq be the
singular points of the correspondence {Z;,Z>}. By the formula (1) of
chapter 1, {«;} should be mapped to {a;} by f. Since f is of order 3,
it should map at least one of a;’s, say ai, to itself. Let b be the double
zero of S(z,a;). Then, by the formula (1) of chapter 1, & should be a
fixed point of f. Since a; is a simple zero of £4(z), Sy(z) should have
another zero, sav ¢, in 2. Then ¢ should be a fixed point of f by the
same reason. So f has 3 fixed points, which is a contradiction. So,
there cannot exist an automorphism of order 2.

Combining these results, we have proved the following theorem.

THEOREM 8. For a 3-connected domain 2, 1 he following statements
are equivalent.

(1) © has an automorphism of order 3.

(2) The Szegé variety of 0 is reducible.

(3) There exist two points o, b such that « is a double zero of Sy(z),
and b is a double zero of S,(z).

4. Epilog

3-connected domains that satisfy Theorem: 8 have an interesting
property. Let ¢ be a harmonic function on @ continous up to the
boundary and ¢ = 1 on one of the boundary component and ¢ = 0 on
the other two boundary components. Then,

o(z)+ o(Z1(2)) + o(Z2(z)) =1

on . Put z = a, then we get d(a) 4+ ¢(b) + ¢(b) = 1. Similarly, ¢(b)
+ ¢(a) + o(a) = 1. So, we have ¢(a) = &(b) = 1/3.

i
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