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ON LOWER BOUNDS OF EIGENVALUES
FOR SELF ADJOINT OPERATORS

Gyou-BonG LEE

1. Introduction

For the eigenvalue problem of Au = Au where A is considered as
a semi-bounded self-adjoint operator on a Hilbert space, we are used
to apply two complentary methods finding upper bounds and lower
bounds to the eigenvalues. The most popular method for finding upper
bounds may be the Rayleigh-Ritz method which was developed in the
19th century while a method for computing lower bounds may be the
method of intermediate eigenvalue problems which has been developed
since 1950’s. In the method of intermediate eigenvalue problems (IEP),
we consider the original operator eigenvalue problem as a perturbation
of a simpler, resolvable, self-adjoint eigenvalue problem, called a base
problem, that gives rough lower bounds. The intermediate eigenvalue
estimates are obtained by computing the specirum of the base operator
summed with a positive semi-definite finite rank operator. But inter-
mediate problem methods have some defects. They require practically
not only explicit knowledge of reducing spaces and spectrum of the base
operator but also special choices for the range space of the approximat-
ing finite rank operators. This makes the resulting problem have dense
matrices so that they may be difficult to handle practically on avail-
able computational resources. These practical obstructions come from
the explicit involvement of the base problem eigenfunctions which are
tvpically supported throughout the problem domain.

The so-called eigenvecter free method (EVF) which was developed
recently by Beattie and Goerisch [5] may overcome such problems since
it does not need information of eigenfunction: of the base problem and
permits the use of finite-element trial functions so that it yields final
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computational matrices which are sparse and well-structured. Bounds
are obtained from generalized symmetric matrix eigenvalue problems.
Highly accurate bounds require large order of matrix problem which
may not be practical to use the QZ method [10] which is not able to use
any existing sparsity in the original coefficient matrices. For large order
problems, the necessity of retaining the sense of these derived bounds
in the face of finite-precision arithmetic leads to the consideration of
iterative algorithms having a variational component. Such a compo-
nent provides intermediate results at every step that may be used to
deduce rigorous bounds, even the method terminates prematurely.

In this paper we find a relationship of eigenpairs between an IEP
method and the EVF method. We also show how to get lower bounds
with an iteration method to use the sparsity of the matrices. Finally
we show how to use a Ritz value to make the number of iterations so
small. In Section 2 we review the EVF method of Beattie and Goerisch
and give a relationship of eigenpairs between EVF and IEP methods.
Section 3 deals with how to take advantage of the sparsity of large-
order matrix eigenvalue problems as well as how to choose shifts to
make the number of iterations small. With these shifts we compute
in Section 4 vibrational frequencies of a clamped plate on rectangular
domains.

2. On the eigenpair of EVF and IEP methods

In this section we describe the EVF method briefly and show a re-
lationship of eigenpairs between the EVF method and an IEP method.
For more details on the EVF method, one should refer to [5] and for
the IEP, refer to [3,15].

Let 'H be a seperable Hilbert space with a norm || - || and an inner
product (-,-). Let A be a self adjoint operator with domain dense in
H which i1s bounded below, and let the spectrum consists of a finite or
infinite number of isolated eigenvalues

M <A< S An

on its lower part, each having finite multiplicity. Here A, means the
least limit point of the spectrum of A. We denote a(-) by the quadratic
form which is the closure of (A-,-). We assume that a self adjoint
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operator Ag is taken to be bounded below and Ag < A, and that the
isolated eigenvalues of A4,

0 0 0
are known. We assume that the quadratic form a(u) is decomposed as
a(u) = ap(u) + | Tulf}

where T is a closed operator on H to another Hilbert space H,.
Let T be the adjoint operator of T. We take a sequence of finite
dimensional spaces {Px} such that

PyCPrC- - CPr CPiyr C-o- C Dom(T*) CH,

and let Py : H. — Pi be the projection that is orthogonal with
respect to the inner product {-,-},. We construct the intermediate
quadratic forms ay(u) as

ar(w) = ao(u) + || PeTu|?

for all v € Dom(ax) = Dom(ap) N Dom(T), which may be associated
with a self-adjoint operator given by

Ap = Ap + T*PT

with Dom(Ax) = Dom(Ay).
For any constant ¢, the operator 4x may be rewritten by

Ay = (Ao — %) +(T*PiT + &%),

Let By = T*P.T + 62 for each k. The operator By produces a new
inner product (B, ) on the Hilbert space H. Let a sequence of finite
dimensional subspaces {Pi} be given such that

PLCP,C o CPyCPuy1 Coo-CH

and let 15,, : H — P, be the projection that is orthogonal with respect
to this inner product (Bj-,-). We form the intermediate operators as

Akn = (Ap — 6%) + B Py,
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The associated n x n Weinstein and Aronszajn(W-A) matrix of the
operator Ay , is given by

(2.1) Wi n(X) = [(pi + R, 52 Brpi, Brp;)]

for i,7 = 1,...,n, where Rg is the resolvent operator , (Ag — pu)~!, of
Ap at . If welet u = XA + 6% and introduce the change of variable
qi = RﬂBkﬁi into the W-A matrix (2.1), we get

Win(A) = (B (Ao — 1)gi, (Ao — 1)g5) + (¢ (Ao — 1)a;)]
which is more simplified with a formula for By '(see [1,2]) to get
1
Win(A) =[(g:, (Ao — 1)g;) + m{((An — 1)gi, (Ao — 1£)g;)
k
— Z (Ao — 1)qi, T*piycim (T*pm, (Ao — 1)g;) H-
l,m=1
If we define the matrices as
Py =[(gi, (Ao — )g5)),  Fr = [(pi,ps)e],  H = [{(Ao — 1), T*p;)]
Gy = [<(A0 - N)qi»(AO - :LL)QJ>]a Gr = [(T*va*p]”a
then the W-A matrix is compactly expressed as

. 1
(2.2) Win(A) = F1 +
= A

{G1 — H[(up— M F2 + Go] T H*},

Based on this W-A matrix, Beattie and Goerisch introduced the EVF
method. For more general case, refer to [5].

THEOREM 2.1. (Beattie and Goerisch) Let u and r be chosen so
that A_, < p < A% Suppose that {p;}*_; C Dom(T*) and {¢i}}=, C
Dom(Ag) such that {(Ag — p)q; ), and {T*p;}%_, are jointly linearly
independent. If the generalized matrix eigenvalue problem

en 5 R -e2 &) ()
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has discrete finite eigenvalues ordered as
LSS <a<0<&y <L

then for each eigenvalue €, with p < | we have a corresponding lower
bound to an eigenvalue of A;

1
et — < A
&

If {¢;}7=; and {p;}}_, are chosen to have local support as with
finite-element trial functions, we note then that the resulting matrices
will be sparse and the matrix eigenvalue problem may be efficiently
handled using sparse techniques, even for quite large values of n and
k. .

We next consider a relation between eigenpairs of the matrix pencil
(2.3) and those of intermediate operators Ax .. Let u be an eigenfunc-
tion of Ak, corresponding to an cigenvalue A which is not an eigen-
value of Ag — &%. Then ) satisfies the determinantal equation of W-A
matrix (2.1) and « = Z;-l:l a]-R?\+§sz1Sj with o = (@, ,an)T €
kerWi n(A). Let = A+ &%, Then there is a positive integer r such
that A% < p < AV If we let q; = R?,Bkﬁj, we have

1
Fia =¢{G, - H[*ZFQ + Gy] T 'H" }a

1 1 n -
with £ = py =% and w = ., a;q;. If we define
(2.5) 8= E(Fy — EG) T H* ¢,

the vector (

al . . o o . .
g | 18 an eigenvector of (2.3) corresponding to an eigen-

IS

o ) .
value €. Conversely, let | ) be an eigenvector of (2.3) corresponding

J5]
to an eigenvalue £ for fixed ji. Then

Fra = £1G, - H[«%FQ + Ga " H* e

; . . ) ; 1
Therefore v = Z;:la]-q]- is an eigenvector of Ay, with 62 = —=

3

. ) 1 . .
corresponding to an eigenvalue A = p+ e which leads to the following.
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«

8

with a corresponding eigenvalue £, then 2;1:1 ajq; is an eigenvector

THEOREM 2.2. If ( ) is an eigenvector of the matrix pencil (2.3)

. ) . 1 .
of intermediate operator Ay, with 62 = —= which corresponds to an

. 1 o . .
eigenvalue p + —. Conversely if u is an eigenfunction of Ay n corre-

£

1 .
sponding to A for fixed §2, then for u = X + 62, % is an eigenvalue

of (2.3) corresponding to the eigenvector (g) with a € kerWg »(\)
and f3 in (2.5).

For obtaining a close relationship of eigenvalues between EVF and
IEP, we define for § > 0 by A% = Ao —6I+(T* Py T+0I)P"?. Note

1
that I/V,f‘n()\) = My n(€)/(F2 — EGy) with € = ~3 and 6 = ¢ — A which

is the Schur complement of M. ,,(£) with respect to F» — £Ga(see [7]).
Here

G R

Since F3 (or G) is positive definite, for any £ < 0 the determinant
of F2 — £Ga, |F; — £G2|, does not vanish. Thus |T"V,f’n(,\)l |2 —€Ge| =
|Mi,n(€)|(see [7]). Let A5 be an eigenvalue of Af ,, for fixed 6. For
po= 250 49 e have

! 1 1
WEAQAE NPy + 5 Gol = [Min( =)l

Since |[W{  (A*™9)] equals zero, we have —g asan eigenvalue of My

with g = A%m9 19 Conversely, for fixed y, let £ < 0 be an eigenvalue
of Mg n. le., |Mgn(€)| = 0. Since |Fy — €G3 # 0, we have |nyn(u +

1
%)l = 0 with 8 = —l. It follows that pu + ¢ is an eigenvalue of Af

1
with 8 = ——.
£
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1.
THEOREM 2.3. For any p with 1 < p < [, g+ —g— 1s equal to the
S
. (k,",—g};) ‘ﬁ
(r — p)th eigenvalue, A, _, cof Ay 07
Proof. Let N/ (X) be the number of eigenvalues of A}, strictly less
1

than A. For = —— N{ (4 + #) =r-—p—1(See [5]). Thus we have
<p ’ 4
(k.u,m-‘—-) 1 (k,a,—2-)
’\7'—11—157) Lt < Ar—-‘j t
&p J
1 L
By the argument above, p + — is an eigervalue of A4 kﬁff and thus
>
1 (kon,= =)
TS f_ should be equal to A, tr
P

3. Numerical realization of eigenvalue bounds

We deal with large order matrix eigenvalue problem which comes
from the EVF method. For this purpose, we consider the generalized
matrix eigenvalue problem

{3.1) A = £Bx

where A is a symmetric positive definite matrix and B is a symmet-
ric positive semi-definite matrix. Many different approaches exist for
computing selected eigenvalues of (3.1) when A and B are very large
and very sparse. The simplest of these is a subspace iteration. But
we are interested in a few eigenvalues. Hence the spectral transforma-
tion Lanczos method (STLM) may be useful If one is willing to live
with the expense of a factorization of A — 0B, STLM is often substan-
tially more effective than subspace iteration. Moreover, if B is singular,
STLM does not suffer the same degradation of the accuracy [11]. With
a shift o, equation (3.1) is transformed to

(3.2) (A-oB) "B = :
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For convenience, let M = (A — oB)~'B. All eigenvectors of (3.1)
corresponding to finite eigenvalues are also eigenvectors of M, and
they lie in the range of M. The semi-inner product induced by B is a
true inner product on the range of M, and also the eigenvalue problem
(3.2) is self-adjoint with respect to this inner product even though the
problem is not symmetric [11]. STLM requires calculating the action of
M on a vector of the range of M at each iteration step. It constructs
a symmetric tridiagonal matrix, T; € IR7*7 in the course of j iteration
steps, whose eigenvalues approximate those of (3.2). A set of Lanczos
vectors {g;}]_, that form a B-orthogonal basis for the order j Krylov
subspace is generated by M and ¢;. In floating point arithmetic, B-
orthogonality is volatile and expensive to maintain, but so long as the
{gi}]., are kept robustly independent (5-“semiorthogonal”), one can
guarantee up to terms on the order of the machine precision that T}
is the Rayleigh-Ritz restriction of (3.2) to span({q:}!.;) with respect
to the B-inner product [13]. The eigenvalues of T} will be associated
with upper bounds to corresponding eigenvalues of (3.2) and thus it
will be associated with lower bounds to corresponding eigenvalues of
(3.1).

On the other hand, the eigenvalues of the given operator from the
EVF method are associated with lower bounds according to

1
pot — < A
3t g

for each p = 1,2,...,r — 1. If é,, > &, is an estimate of &,, then
u+(1/fp) < p+(1/&) < Ar—p. Hence we must seek upper bounds to
the negative eigenvalues of (2.3) or (3.1) so as to maintain consistent
lower bounds to {A;};7!. If m is to be taken practically such that A, <
# < Apyi, where A, denotes the m-th Ritz bound corresponding to
the eigenvalue A, then it makes sense to find lower bounds only to
{X\i}* because p may be already a lower bound to the other ones

{\}oh and thus g+ —for p = 1,--- .7 —m — 1, may be worse than

P
i to them. Thus we need at most m biggest negative eigenvalues of
{&i} instead of the entire set of negative eigenvalues.

R0 |Gy H . .
Let A = [ 0 F2] and B = [H* Gy ] Now we consider how to
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select the shift o for the equation (3.1). It is desirable to choose a zero
shift in order to preserve the sparsity of .A. However, small magnitude
eigenvalues may need many iterations to get « reasonable accuracy. In
our model of the clamped plate problem the negative eigenvalues of
(A, B) have very small magnitudes compared to the extreme positive
eigenvalues. Moreover, the number of Lanczos steps required exceeds
half of the size of its computational matrix to get a reasonable accuracy.
In order to overcome such trouble, it may be possible to take a shift
so that the wanted eigenvalue of M has the biggest magnitude. For
this purpose, let m be such that A,, < pand let p =1 —m. If we take
o= (A, — )", it could be then Er—ma1 < 7 < € n. Without loss
of generality we may assume that o is closer to €r—m than to &,y
since A, can be taken to be closer to A, thaa to P
If 1;’s are the ordered eigenvalues of (A — +B)~'B, then we have

1

Vg Vg m41

+ o,

where S is the rank of B. We note that the eigenvalue vg has the biggest
magnitude.  Since we only need few extreme eigenvalues, vs, ...,
vs_m+1. of (A—oB)71B, the Lanczos method is expected to be quite
efficient. Moreover, if 4 and B are large and sparse, we can efficiently
reduce the storage for A and B as storing only their nonzero entries
because the STLM requires caleulating the action of (A — aB)™1B on
a vector at each iteration step. even if it needs additional storage for
factorization of (A — B).

Since we seek upper bounds to the negative eigenvalues of (2.3) or
(3.1), we have to find lower bounds to the ccrresponding eigenvalues
of (A — eB)™'B. It is appropriate to comment here that the modifi-
cations to Rutishauser’s subspace iteration ritzit ([12]) that extend its
applicability to (3.1) are straight-forward, but the resulting eigenvalue
estimates are lower hounds to & of (3.1). Hence it is impossible to
directly deduce upper bounds to A,. Remarkebly. it can be recovered
with a rank-one modification of T} and so regain the sense of derived
bounds for A;. We give a brief description. For more detail, one may
refer to [11]. Let T, = Q1B(A — ¢B)~'BQ; b the tridiagonal matrix
in STLM and define W, = Q;(A—0oB)Q;, where () is a matrix whose

colummns are Lauczos vectors. Then the eigenvalues of 1, are the Ritz
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value approximations to & — o and thus the eigenvalues of Wj"l are
lower bounds to v; which we want. Moreover, the matrix Wj_l differs
from T only in the last diagonal entry. Hence we easily modify the
Lanczos algorithm for our goal. The following is a modified algorithm
with full reorthogonalization.

Set go = 0 and take r; € ran(M) and let §; = ||r1]|.

For j = 1,...,maxit, do
q; 2 (normalization)
B;
a; & ¢;BMg;

) 1
fyg=1, w « (]i(A_UB)ql and gy « - aq
w

1
B
Hi—1

else;  p; — —a; —

re (M —aj)g — Bigi-1

Tjp1 & T — Z ¢i(gi!Br) (orthogonalization)
1=1

Bit1 « (7‘;~+IBT‘]~+1)% (norm of rj4, with respect to B)

Omaxit < maxit + Hmaxit-

4. Application to a clamped plate problem

In this section we give rigorous upper and lower bounds to vibrations
of uniform clamped plates on a rectangular domain. The estimation
of these vibrations has been treated previously in [4,15]. The lower
bounds are obtained by the EVF method using bicubic spline functions
as trial functions, while the upper bounds are obtained by the finite
element method using the same trial functions.

Let © denote the open rectangle (=5, %) x (— %, -g—) in IR?. Consider
the following simple model of vibration of a clamped plate:
A’u=X uon with u= u =0 on 0.

on



On lower bounds of eigenvalues for self adjoint operators 487

That is, the operator A4 is defined on a core of C&P(Q) Cc L*(Q)=H
by

otv O 5 dtu

5o +3y4 +;az~2<9;/2 =0 on 01.

with u=

u
on
We now define a base operator 4y on a core of Cg°(Q2) C L*(Q) by

dtu

QW with  u = 0on 9N
@20y’

Aou =
and T on a core of C7°(Q) C L2(Q) into L*(Q2) x L*(Q) = H, by

O*u  O*u . Fu
Tu = {EE ayQ} with w= 5. = 0 on 992,

The adjoint operator T* of T is then obtained on sufficiently smooth

functions of L*() x L*(Q) by

v Pw

T (v, w) = ‘(3'1‘2 + -5?;)

with free boundary conditions.

Notice that the region, the differential equation and the boundary
conditions, share common properties of symmetry. Thus we can take
advantage of this so that we restrict the problem on the space of func-
tions which are even with respect to both x-axes and y-axes. Then we
need extra boundary conditions of

15} , b
i 0on {(0,y),(z.0)]0 <z < g end 0 <y < —)}.
On 2 2

: /
We define © = (0,5) % (0,2). T = {(4,y) (2. 2) [0 < 2 < = and 0 <

{
y < 3)} and

, b
Ty = {(0,y),(z,0) |0 < = <%and 0<y<3}.
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The boundary conditions for A, Ap and T* restricted to even-even
symmetry class are as follows:

Jd 0
(1) For A,u = & 0on Iy and L. Oon Ty
on on
0
(2) For Ap,u =0 onI'y and 5:—3 =0onT,
(3) For T*,-?-y— =0 on I's.
an

The eigenvalues of Ag with these boundary conditions are easily found
to be
2rt
a?bh?

Now we are in a position to construct approximating vectors for
both the EVF and the Rayleigh-Ritz methods. Le: N x N finite-
element mesh be overlaid on . Trial functions will be constructed
from the associated set of bicubic splines so as to satisfy necessary
boundary conditions. Let B; be cubic spline functions on [0, 1] for
t = —1,...,N + 1. For approximating vectors within Dom(4,), we

define

(2i — 1)%(27 — 1)* for 4,7 > 1.

Bo = By, Bl =B+ B,
B]:B], fOI'j:?,,...,N—2
Bn_; =4Bn_y — By, By =4Bn+1 — Bw.
Then the approximating vectors are defined as ¢ ;(z,y) = B,(x)B](y)
for 0 <1,7 < N so that the dimension of the finite element space for

Dom(Ap) is (N 4 1)2. For approximating vectors within Dom(T*),
define

BO :Bo, B] :Bl +B—]
BJ:B]’ forj:?,...,N-Fl.

Then the approximating vectors are defined as {B(z)B;(y),0} and
{0, Bi(z)Bi(y)} for 0 < i,l < N+1and -1 < j, k < N +1 so that
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the dimension is 2(N + 2)(NV + 3). Thus we have n = (N + 1)? and
k =2(N +2)(N + 3) for the EVF method.
For upper bounds, we define

.B[] == B(). .B] - B] + B‘_l
BJ-:B]-, forj =2,...,.N -2
_ 1
By =By — ;BN + Bngtr-

The approximating vectors for Dom(a) are defined by pij(z,y) =
Bi(x)Bj(y) for 0 < 4,7 < N — 1 so that we have n = N? for the
Rayleigh-Ritz problem.

For the computation of each entry of the matrices of EVF and
Rayleigh-Ritz problem, we need not compute all the integrations that
come from the inner products of approximating vectors directly. In-
stead. we need only find 4 local overlap matrices of dimension 4 x 4
and later compute matrix entries by assembly. For this purpose we
denote by S_;, 50,5, and S, the cubic spline functions on [0,1] with
mesh size of 1. Let S} and S}’ be the first and second derivatives of S;.
Then we hLave the following local 4 x 4 matrices:

(Si.5;)
177 125/110 3/7 17110
1297140 297/35 9337140 377
3/7 933/140 297735 1297140
1/140 3/ 129/140 177
{s..5)
1.2 —2.1 0.6 03
5.9 ~13.2 =33 6.6
66 ~33 ~132 99
0.3 0.6 ~21 1.2
G5)
¢ J
T~ 21 =36 =03
21 10.2 87 36
~3.6 - 102 21
0.3 30 21 18
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G
12 —18 0 6

—-18 36 -18 0
0 —-18 36 —~18
6 0 -18 12

Let B;’s be the cubic spline functions on [0,¢] with N uniform
meshes and let h = —Jg— Then the global N + 3 by N + 3 matri-
ces [(Bi, B;), [( B!, B})),[(Bi, BY)] and [( B, B)] are obtained by as-
sembling the corresponding local matrices and multiplying by h, %, %
and 711-, respectively. Moreover each entry of the matrices [<B,’, B ]>} ,

[(Bi, B,‘)] and [<Bi, BJ>] with matrices of their derivatives are formed

to be a linear combination of each entries of [(B;, B;)] with matrices
of its derivatives. From these, the final matrices Fy, Fi, G, G2, and H
are built. The (z,7) entry of each matrix is expressible as the sum of
4 — |i — j| integrals of polynomials of degree 6 or less over some,up to

4, consecutive subintervals [24, 2441] with % = -7-\7 and 0 <k <n-1.
These integrals may be computed analytically in principle but this may
be highly tedious. Since each integrand is a polynomial of degree no
greater than 6, a Gauss quadrature rule with 4-points is adequate to
compute exactly each subinterval integration. We note that the inner
products of cubic spline functions B; and B; vanish if the difference
between i and j is greater than or equal to 4(i.e.,|¢ — j| > 4). The
inner product matrices Fy, Fy, G1, G2 and H have a full-band width of
7. Thus the matrix A — o8B and B have at most 441N? + 196N + 103
nonzero entries. If we store only the nonzero entries of the matrix,
then the size of storage may be reduced from O(N*) to O(N?) even
though additional storage for factorization of (A — oB) is needed. In
the following table, we show upper and lower bounds for rectangular
clamped plate problem. Here the upper bounds come from Rayleigh—
Ritz problem of N = 35.

Table : Vibration of a clamped rectangular plate; @ = 4 and b= 3
(even-even symmetry class)
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Shift(A ) 10.2 794 198.0 370.5
N b} Xa X3 4

Base 1.3529040 12.176136 12.176136 33.822601

3 10.1694382 79.3704740 197.847513 370.014443

12 10.1694950 79.3813653 197.897575 370.352315

16 10.1695108 79.3833273 197.906415 370.370442

20 10.1695163 79.3839009 197.908861 370.386172

Ritz 10.1695239 79.3844233 197.910806 370.399134

STLM was used with a random starting vector and shifts derived
from the corresponding Ritz values Ay, Ay, Az, Ay estimating Ap, Ay, A3,
and A4, For simplicity, full reorthogonalization was used. The sparse
LU factorization needed by STLM was perfermed with the Harwell
subroutine MA28. Calculations were performed on SUN SPARCstation
1" in double precision. The sigle biggest eigenvalue of (A — oB)~'B
stabilized to full machine accuracy within 4 Lanczos steps, independent
of N. It should be noted again that if we use zero shift, the number
of Lanczos steps required exceeds half of the size of its computational
matrix, ie. (N 4 1)7 + 2(N + 2)(N + 3), to get the same accuracy
as nonzero shift has. In our model problem we have used Rayleigh-
Ritz values when taking shifts. But if we have «a priori knowledge of
separation of eigenvalues of the given operator, we don’t need to find
upper bounds before computing lower bounds.
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