J. Korean Math. Soc. 31 (1994), No. 3, pp. 521-537

CONDITIONAL FEYNMAN INTEGRALS
INVOLVING INDEFINITE QUADRATIC FORM

DoNG MYUNG CHUNG AND SI1 Ho KANG

1. Introduction

We consider the Schrodinger equation of quantum mechanics

L0 - h . -
’hé?r(t’”) = _2mA(t,n) + VipL(t,7) (1.1)
10,7 = v(7), 7€R®

where A is the Laplacian on R”, I is Plank’s constant and V is a

—

suitable potential. Let K'(¢,7,0,¢) denote the fundamental solution to
Schrodinger equation (1.1), i.e.,

Pt = [ I(7.0,Ow(E)dE.

-

According to Feynman [9], K'(¢,7,0,£) is given by the formal path
integral :

K706 = | [ ]exp{%sm}pm, (12)
C{,ﬁo‘t 3

where Cp .[0,1] is the space of all paths 2 with 2(0) = £ and z(t) = 7,
D(r) is a uniform "measure” which does not exist, and S(a) is the
action integral associateed with the path z; i.e.,

T fda\’ N
S(m):/o [?(I) —I’(x(s))]ds.

The basic problem of quantum mechanics is to find the solution
['(t,7) or the fundamental solution K (¢,7,0,£) to Eq. (1.1).
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In [10] Gelfand and Yaglom made an attempt to give sense to the for-
mal integral in Eq.(1.2) by introducing a Wiener measure with complex
variance parameter. Unfortunately their attempt was failed as pointed
out by Cameron in [3,p.126].

There has been several rigorous approaches to Eq.(1.2) to provide
the fundamental solution to Eq.(1.1)(see for examples, [12],[16],{18]).

In [5,7) we introduced the concept of the conditional Feynman in-
tegral and established formulas for the conditional Feynman integral
for the Fresnel class and then use them to provide the fundamental
solution to the Schrédinger equation for a class of potentials.

In this paper we establish the existence of the conditional Feynman
integral for a wider class of functions than the Fresnel class and then use
them to obtain the fundamental solution to the Schrédinger equation
for the anharmonic oscillator.

2. Definition and preliminaries

Let H be a real separable infinite dimensional Hilbert space with
inner product < -,- > and norm |-|* =< -,- >. Let ||-|| be a measurable
norm on H with respect to the Gaussian cylinder set measure m on
H (see [11,17]). Let B denote the completion of H with respect to
| - |. Let ¢ denote the natural injection from H into B. The adjoint
operator ¢* of ¢ is one-to-one and maps B* continuously onto a dense
subset of H*. By identifying H and H* and B* with :*B*, we have a
triple B* C H = H* C B and < z,y >= (z,y) for all z in H and y
in B*, where (-, -) denotes the B* — B pairing. By a well known result
of Gross, m 0i~! has a unique countably additive extension y to the
Borel o-algebra B(B) of B. The triple (H, B, u) is called an abstract
Wiener space.

Let {e;;7 > 1} be a complete orthonormal set in H such that e;’s
are in B* which is the dual space of B. For each h € H and z € B, let

n

. lim Z < ejh > (e5,x), if the limit exist,

(h,.’l) - n.——»ooj=1

(2.1)

0, otherwise.

Then it is well known that for each i(# 0) in H, (h, 5 1s a Gaussian
random variable on B with mean zero and variance |k|? and that if



Conditional Feynman integrals involving indefinite quadratic form 523

{R1,h2,-- ,hn} is an orthogonal set in H, tlen the random variable
(Rhj,z)’s are independent. Further, we see that (h, Az) = (Ah,z) =
Alh,z) for all A > 0.

Let R", C and C™ denote, respectively, the n-dimensional Euclidean
space, the complex numbers and the complex numbers with positive
real part. Let A/(H) be the class of all C-valuad Borel measures on H
with bounded variation. Then M(H) is a Bunach algebra under the
total variation norm and with convolution as multiplication. Given
two C-valued measurable functions F and G on B x B, F i1s said to be
equal to G s-almost surely(s-a.s.) if for each a, 3 > 0, jo x p{(x1,24) €
B x B : F(az1,8z2) # Glaxy, Bey)} = 0. For a measurable function
Fon B x B, let [F] denote the equivalence class of functions which are
equal to F s-a.e(see [4]).

Let 4) and A, be two bounded non-negative self-adjoint operators
on H. Let Fa, 4, be the space of all s-equivalonee classes of functions
F which for some o € M(H) have the forin

Flay,x2) = / exp{i[(;i{%h,‘rd+(Az%h,;z:gﬂ}({(f(h). (2.2)
JH

As is customary we will identify a function with its s-equivalence class
and think of F4, 4, as a class of functions on B rather than as a class
of equivalence classes. It is known [15] that Fa, A, forms a Banach
algebra. Let F(x1,22) be a C-valued measurable function on B x B
such that the integral

1

J(A1,A2) = / F(,\:TI.I';,)\;%.’1/‘3)(;(/[ x )y, x0)
JBxB

exists as a finite number for all A} > 0,4, > 0. [f there exists a function
J*(z1,22), analytic in (z;,22) on CT x Ct such that J (A1, A2) =
J(A1,A2) for all A} > 0,Xs > 0, then J*(z), =2) is defined to be the
analytic Wiener integral of F' over B x B with parameter {z, z2), and
for (z),29) € CT x CT we write

E“si 2 [F) = J* (21, 2).

3%

Let (q1,42) € R? and let F be a C-valued measurable function such
that E¢™%= .22 [F] exists for all (z1.20) € C x Ct. If the following
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limit exists, we call it the analytic Feynman integral of F over B x B
with parameter (g1, ¢2), and we write

E*™aa:[Fl = lim E®"Was[F),

Il"""ql
Zg——1iqy

where z; approaches —ig; through C* for each j=1,2.
It was shown in [15] that for F' € Fy4, 4, given by (2.2),

[~}

En e [F] = /e\p{ —:1522 (Auh,h)}do(h) (2.3)

m=1

and

Bl [F] = /;{exp{—é i q,—nl(Amh,h.)}da(h) (2.4)

m=1

for each real g1 # 0 and ¢ # 0.

Let X = (X1, X3) be an R"*™(= R™ x R™)-valued measurable
function and F a C-valued integrable function on (B x B, B(B x B), u x
#)- Let o(X) denote the o -algebra generated by X. Then by the defi-
nition of the conditional expectation of F given o(X), written E[F|X],
is an R®*™-valued o(X)-measurable function on B x B such that

/ Fdluxp = / E[F|X] d(u x y), for E € a(X).
E

It is well known that there exists a Borel measuable and (u x u)x-
integrable function 4 on (R"*™, B(R"*™)) such that E[F|X] = o X,
where B(R"*™) denotes the Borel o -algebra of R"*™ and (u x ©)x
is the probability distribution of X defined by (i x u)x(A) = (p x
p)NX71(A)), for A € B(R™™). The function ¥(£), £ € R™™ is
unique up to Borel null sets in R**™. The function 1,/)(6) written

E[F|IX = {] will be called the conditional abstract Wiener integral of
F given X,
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DEFINITION 2.1. Let X = (X1,X2) be an R™ ™ _valued measurable
function and let F be a C-valued measurable function on B x B such
that the integral

/ F(/\1~%:c1,/\2_%x2)d(u > pu)zy,z2)

BxB

exists as a finite number for all A1, A2 > 0. For A1, Ay > 0, let
Taa(i3) = B [F(0 7500 731X (074 08 = (i, )|

denote the conditional abstract Wiener integral of F(z\l*—;-,/\g—%-)
1
given X(/\1-7-,/\g_%-). If for a.e. (91,72) € R™™, there exists a
function JZ, ,.(71.13), analytic on C* x C% such that I3 (m, ) =
Iax, (771, 7m2) for all Ay, Ay > 0, then JZ ., 1s defined to be the condi-
tional analytic Wiener integral of F over B x B given X with parameter
(21, 22) and for (z1,22) € Ct x Ct, we write
Bt [FIX = (7i05)] = J2, L, (71, 72)

‘1,22

If for fixed (¢, ¢2) € R?, the limit
lim E“"v2 [FIX = (17,17)]

21— =gy
22— —iqz

exists for a.e. (n1,75) € R™™, where Aj approaches —iq; through
C* for each j=1,2, then we will denote the value of this limit by
E“"fﬂv“[F|X] and call it the conditional analytic Feynman integral
of F over B x B given X with parameter (g;. g2 ).

3. Conditional Feynman integrals of functions in Fy4, 4,.

In this section we establish the existence of the conditional analytic
Feynman integral for all functions in Fa, 4,.
Let X be an R™*”-valued random variable on B x B such that

X(a1,20) = (X)(21), Xa(2)) (3.1)
where
Xl(‘rl) = ((ghxljv T v(gnsmlj)ﬁ -’YZ(JJZ) = f(/h,l‘zj, T a(’ZN1a$25)

and {g1, - ,gn,h1, -, hm} are orthonormal subsets of H.
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LEMMA 3.1. Let Fy and F> be random variables on (B,B(B),u)
and let X be as in (3.1). Assume that E|Fy|, E[F;] and E[F; - F3]

exist, then we have , for (7], 5) € Rtm™

E[Fi(21)Fy(22)|X (21, 22) = (77, €)] (32)
= E[Fi(z1)|X1(21) = 7] - B[Fa(22)| Xa2(22) = ).

Proof. By the definition of the conditional expectation, we have

| Bl Beadn x n)ar,a2) (3.3)
BxB

—

X = (7, 6)]d(g x p)x, x0T €)s

:/ E[F(z1)F2(z2)
R+m

where (g % p)(x,.x)(E) = (p x u)(X1,X2)"Y(E) for E € B(R™™).
Since X; and X, are independent, (g X p)(x,,x,) = KX, X lX,, and
hence we obtain that

/ Fy(zq1)Fo(a2)d(pe x p)(xy,22) (3.4)
BxB
:/ Fl(fbl)d/L(Il)-/ Fy(xq)du(zy)

B B

= | E[F(21)|X1 = Aldux, (77) - / E[Fy(22)|X2 = €ldux, (€)
R” rR™

:Ln+m E[Fl(fﬁl)l-‘(l = 77] . E[FQ(.’L‘Q)I.»YQ = £]d(l"tl\’l < F‘X;»)(ﬁ,f)

— -

:/};n-’-m E[FI(YCI)‘.Y] = 77] . E[FQ(J,‘Q)[.YQ = {]d(u X H)(lexz)(ﬁ,é)_

Therefore, by (3.3) and (3.4) we have the desired result (3.2).

THEOREM 3.2. Let F € Fa,,a, and let X(z1,z2) be as in (3.1).
Then for all A1, \» € CT, the conditional analytic Wiener integral over
B x B, E*™\ % [F|X] exists, and for all (i7,£) € R®*™ is given by
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the formula
Eanwxl,AQ[Fl}( = ( g)] (35)

-

:/ exp{z <)((A2h 43 )(ﬁa‘f) >}
H
2

< exp{ - iz/\ LAFRE — 15,4 0P) o (h),

=1

WhereXgah) (X )aXQ(h)):(<glﬂg >y < gn.g >, < hlah>
vy o0 < hm,h >). Furthermore, the conditional analytic Feynman in-

tegral E°"fo1.02[F|X] exists for all g1, qa # 0 and for all (77, {) € Rt™
15 given by the formula

E“”fqlqu [F]X

=/ exp{i < X(4
H

xexlj{*éZqJ (’A2h|2 |X; A%h)‘ﬂ}da(ﬁ).

=1

—

)] (3.6)

—

Fh),(7,€) >}

(77,
1
2
1

1\. m.—

h, -

1 1
Proof. For afixed h € H, A7 h and A2 h ca1 be written as

n

1 1
Arh = g <9 Afh>g;+p1. prefon, 04" (3.7)
i=1

1 1
A h = E < hk,A% h>he+p2, p2<(ha,--, hm}L
k=1

where [C]* is the orthogonal complement of the subspace of H gen-
erated by C. Since the random variables (pj,z) and X;(z) are inde-

pendent for j=1,2, it follows by the Fubini’s Theorem, Lemma 3.1 and
(3.7) we have, for all A}, A, € R*

PO i or st

:E[/ exp{ (AT AT 5+i(44§h,A;%25}da(h)
H
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1 -1 ~ 1 _1 ~
=/ E[exp{i(Af hoAT221)) + (AR, A, ’:1:2))}
H

605, 0602 do
=/HE[exp{izn: <g;, Ath > (gjv’\l—éxlj
=1
+i(P1,/\1_%$15}|X1(/\1.%')]
% E[exp{izm: < hk7A1%h > (hk,/\'z_%l’ZS

k=1

-1 -

it 37 2]} a0 ) doh

n 1 1 - _1
2/ E[exp{iz < gy Afh > (g5, 2 2z1)| Xa (N 2)]
H

=1

X E'[exp{iz < hk,Aéh > (Ilk,)\;%x25| X2(,\2_%.)J
k=1
. —1 e . 1 -
X E[exP{Z(Pl,/\l 2-771)}} -1’17[exp{z(p2,/\2 le)}]do(h).

Since Elexp{i); *(p;,2;)}] = exp{—(1/2A;)|p;[*}, we have

1

—1 -1 —
E[FOTH 05 (XG0 ), ()

X1

)) = (@6)] (3.8)
=/H[exp{i < XI(AI%h),ﬁ'>} exp{i < Xg(Aéh),E>}

a1,
<op{=glmnl - gl o .
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Since |p;]* = lAj%h|2 - ]Xj(A;ih)l2 for j =1,2, (3.8) is equal to

-

/H [exp{i < X(APh, A} D), (7.6) >)

D07 AR = 1X (4] )} do ),

=1

ro =

X exp{-—

But |AFh|2 — |X;(A2R)? 2 0,/ = 1,2, forall h € H and o € M(H),
the last integrand is analytic function of (A1, X2) throught Ct xC* (by
Morea’s theorem) and is continuous of (Aq, ;) for ReA; > 0,4, # 0,
j=1, 2. Hence we establish the equations (3.5) and (3.6) as desired.

REMARK. Let A be a bounded self-adjoint operator on H. Then A
can be written as 4 = 41t — 4~ where A1 and A~ are each bounded
and non-negative self-adjoint. Take 4; = A% and 4, = 4~ in (2.2).
When A~ = 0 and A" is the identity in Theorem 3.2, we obtain results
for the Fresnel class (see, [7]).

In our next theorem, we will need the following summation proce-
dure (see.[14])

T N
Rnf(?])dnwAh_xgo/Rn f(n)exp{——ﬁ—}dn (3.9)

whenever the expression on the right exists. Of course if f € L'(R"™),
it is clear by using the dominated convergence theorem that

/ f(v}')dﬁ:/ finan.
J R™ R

THEOREM 3.3. Let F and X be as in Theorem 3.2. Then for all
(A1, A2) e CT x CT,

/R'””" (2/\_;) ' G%) ' CXP{_%()@ [71* + /\'zIEIQ)}

—

w FEWAL A, {FLX — (77‘£)d77 (lg
:Eanw,\l,,\z[F]

(3.10)
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and for all reals q1,q2 # 0,

Wi G\ \% i ,q2
[ ) (52) e ot + 22161}

x E*oe [FIX = (7, )] dijd€
=E* ez [F),

(3.11)

Proof. We will only show that (3.11) holds since the proof of (3.10)
is similar.

Let q1,92 # 0. Then by using (3.10), the Fubini theorem
and (3.6)
T (my ey i e
/Rn+m(‘)7ri) (%‘ri) exp{ 2 |_‘] |€l }
x Eanfq1 72 [FIX 7 )]
£l

dif d€
. - i(]2 =9
g [ () () e )
Ao Rntm V271 2me P 2 i+ 2 €]

)
71? +|€l }

Xexp{ B [FIX = (7,6)]dif dE
"z' qo T i1 e | 12
= Jim. R[ L)) T e { L + Liep))
? 2 —|— 2 . 1 1 - =
« exp{— LI [ ewfi < xafn aim, .8 >}
H
.2
i L oz
cop{=5 3 a7 (AT - LX) o )] o
j=1
. 2 n m
_ r 2 242\
_Algnoo [e\p{ 2]_] qJ (|4 hl IA (4 h)l )} (‘)m) (‘771'2)
1,1 — Aigy, _ . " 3 - -
x/ exp{ ;(—z——ji)]?]]Z+z<A1(Al h),n>}d77
x/ eXP{~%(———'—1 Aigr

T 3k +i<X2(A§h),E>}dE]da(h)

T 1 —1/ 45112
—AlgnOO H[exp{—-i Z;qj (|AZR]" —
]:

x;(4im}
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C=)
X | =
2w

o[

( 21 A )_2 exp{..;AIXl(Al%h)P }

1 — Aiqy 2(1 — Aiqy)
2 \E, 2mA \% AlXo(AZR)?
— S do(h
% (%ri) <1—Aiqg) e‘cp{ 2(1 — Aig2) } o(h)
i
:/;i[exp{—:—q—l < Arh,h > ——é-(;; < Axh,h >}}do(h)

:E“"quyqz[F].

4. An application
In this section we use the concept of conditional analytic Feynman

integral to provide a fundamental solution to the Schrodinger equation
for the anharmonic oscillator.

THEOREM 4.1. Let F and X be as in Theorem 3.2. Let ¢ be the
function defined on R"*™ by

Y, 72) = / exp{ < (1, 52), (M1, 77:) > }do(§, §2),  (4.1)
Rnat+m

Wh(i’le Qb 15 a coImmn Ie}x BO] 81 measure on R, 5% h b()u.n(j(,d Val latl()ll
p
and Iet

G(z1,27) = G (a1, wa) = Flay, 22)0( X (@, 22) + (71.72)).
Then for all q1,q2 # 0, we have that

E*™a.a Q) (4.2)
.2
i _ T TS
:/H[em{-;ij AT P — | X (A /1)12)}
2 &
X/ exp{ < (n,y2),(M1,72) >
Rn+m

__qu

X 4,%/1”) + 951 }dcb(yl,n)]dff(h)-
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In addition, we have the alternative expression

Eanfq1.ll2 [G] (43)

Z/Rn+mE"'"f"""2 [FIX = (&,&) - (i, )]
x (2—q7rl_i)%(‘>m>~ { Z‘IJ|§J 771 }¢(f:,£;)d§:d§;

Proof. By using Proposition 1 of [19], Theorem 3.2 and the Fubini
theorem, we obtain for A1, A2 > 0,

/ G()\l—%lﬂl,)\Q—%JJz)(l([JXﬂ)(ﬂ}l,.’lf?)
BxB

_l

:\/;ln+m E|:F(/\1—%‘7/\2—%.)’}((/\1_%.’)‘2 ) + (771’772) - (§1a€2)

6. () (8)F

2
ZA & — 51 fdéidé;

=/ [/ [exp{i < X (4, ih 42211) (ﬂ,{;)_(,ﬂ’,ﬁ)>}
Rotm |JH
- _J‘_ 2 )\_1 %] 2_ . 4—12-] 2 d h
X exp 22 THOA TR ~ 1 X5(A;2 ) Y do(h)

ml»—‘

exp{——

y /W exp{i < (§1,52), (61,6) >}d¢(y‘1,g‘2)] dE d,

2

1 1 R
= i —= S ATH(A; 2R — | X(A;2R)2
[l 00 st

X (ﬁf/ exp{i < Xi(AFR), 6 — i) >

27
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~ Mlé -l

S i< L6 > 6

x (ﬁ)%’/mem{i < Xa(A2¥h), 6 — 1 >

27

A& —
2

&

ZA 14,50 - 13,4, 0 )}

2
X exp{i < 15,45 >
An-{-‘m Z 4 J

Jj=1

+1 <G > J A0 )| doh)

wln——'

[ Jeof-

2
1 . ..
) Z X5 jéh) + yjlz}dqﬁ(yl,yz)] do(h)

2

:/ [ekp{—%zp YAl - 1 (A R )}

x/ exp e < (m.m2), (y1,v2) >
Rn+m

1o 1 - .
I A4 ) y,-|~}d¢(y1,y2)] do(h)
52

for all A\, € Ct. We note that |Aﬁhl2 - IXJ-(AJ'%/1)|2 > 0 for

each j=1,2 and the last integrand is continuous in (A1, A2) for ReA; >

0,A; #0, j=1,2 and hence E**fs1.92[G] exists and is given by (4.2).
To obtain the alternative expression (4.3),

n

/ B [FIX = (6.6 i) (=) (3=)

.2
p) — ) - - -
<exp{5 Y )l — 1 pu(d, &)déidg
7=1

m
2

wola

(L) ¥
27

= Aim E*o [FIX = (6,&) - (7,7 (55

A—oc Rn+m 27\'1
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534
1 3%
xexp{;}qu;!@ Bl = S0 6L &)déidé
= lim [ / exp{i < X(A13h, A2 7 h), (&,&) — (i,13) >}
A—o0 Rn+m H

.2
l — 1 = 1 2
x exp{—2 D65 (AR = X 4, )}

) el

L expid =

211 271 ! 2 4
=1

. exp{z’<<£:,£§>,(171,172>>}d¢(ﬁl,y*g)do(h)}dﬁdé

=2
lq1|§z - Eji—l)}

Mw

.2
: L4 - 1 . 1 :
= lim [exp{—; Z q; V(142 R — |.X]-(Aj2h)|2‘)}
H St

A—oc
——‘“)% pli < X1(Ar3R), 6 — i
O A
T
x exp{%ﬁl —7i? lglll Y1 >}d51}

d L;l ; r 1 = -
X [(57%) /1;m exp{i < Xa(A37h), €2 — 172 >}

—

(215
24

gy - .
X eXP{‘i‘z|§2 — i) \ Y2 >}d€2]

dé(y, yE)] do(h)

e\p{—— Zq (145302 — (X545 ) )

= lim /
A—oo Jy
2

X / nprn [P\p Z <77J J] }exP{_i_}XIn]‘g}

j—1

( )7( ‘>7r~1 )7((12)7( 2w A )%
27 1— Awpy 27 1— Agy

) AIX(A5h) + 5 + 751 -
x ekp{—z 20— Aig) } dé(yi,v2)|do(h)

7=1
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2
z
oa{-53 0
X/ exp{i <(y‘iay—:2)a(ﬁl,772)>
Rn+rn

2
__12: -1
2 4
2 &

-,

(147 h? = 1504 )?) }

X;(A3h) + 517 }do (i ya)do (k)
=FE%fa1.02 [G].

This completes the proof of (4.3).

EXAMPLE. Let ¢ > 0 be fixed and let A be the real seperable
Hilbert space of paths =~ [0 t] — R™™ such that y(¢) = 0 and

v(s) = — f v (w)du with v € L2 ([0,t]). Define the inner product on
H by

t
(71772) = / ’}Il(u’) ’ ")/2(‘“)(1'[1,1
0

where - stands for the inner product in R**™, Let V be a real valued
function of the form (4.1) and ¥ be as in (4.1) with v € L*(R™*™).

Let a = (a,;) be an (n+m) x (n+m) real matrix which is symmetric
and positive definite such that

det[cos(a'/?t)] # 0, (4.4)

Then the indefinite quadratic form on H defined by
t ! !
< >= [ )2 = ey (1) (s
0

determines uniquely a self-adjoint operator A on H such that (Av1,72)
=< 71,72 > and (4.4) guarantees that A is invertible. Let A7 = A.

Let 8:[0,t] — R™"™ be any absolutely :ontinuous function such
that fot 18 (w)]2du < oo and 3(t) = 7. Let

fliry= e‘(p{ < B B> +i<y. 8> —z/ Viy(u) +,3(u))du}.
0
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Then it is easy to see that f is the Fourier transform of some o € M(H).
We can proceed as in [1] or [15, p.249] to show that the solution (¢, %)
of the Schrédinger equation for the anharmonic oscillator:

i%I’(t,f) = —%AI‘(t, )+ -};(ai:‘- DT, T) + V(@D (4.5)

[(0,7) =¢(7), ZeR"™™

can be represented by
I(t, )
1
=[det{cos(a§t)]| 3. genfi [F(-,-)w(X(»,-)—f- (,71’772))]

where F(zy,z2) = [, exp{i[(A*’h,:mj + (A" h,z3))do(h) and X is as
in (3.1). Let

H(t,(7ﬁ,ﬁ3)) - |det[COS(a%t)]I_%Ea"fl,—x [FIX — "‘(77_1,77;)]
L\2/—-1\% o B
(55)" (57) " {5 lr — 111}

Then (4.3) shows that H(t,(571,72)) is the fundamental solution of the
equation (4.5).

References

1. A. Albeverio and K¢egh-Krohn, Mathematical theory of Feynman path inte-
grals, Lecture Notes in Mathematics(Springer, Berlin), No. 523 (1976).

2. R.H. Cameron and D. A. Strovick , Some Banach algebras of analytic Feynman
tnlegrable functionals, Analytic Functions, Kozubnik 1979, Lecture Notes in
Mathematics (Springr, Berlin) 798 (1980), 18-67.

3. R. H. Cameron , A family of integrals serving to connect the Wiener and Feyn-
man integrals, J. Math. and Physics 39 (1966), 126-141.

4. D. M. Chung , Scale-invariant measurability in abstract Wiener spaces, Pacific
J. Math. 130 (1987), 27-40.

5. D. M. Chung and D. Skoug , Conditional analytic Feynman integrals and re-
lated Schrédinger integral equation, SIAM on Mathematical Analysis 20 (1989),
950-965.

6. D. M. Chung, C. Park and D. Skoug , Operator-valued Feynman integral via
conditional Feynman integrals, Pacific J. Math. 146 (1990), 21-42.



