ANALYTIC TORSION FOR HOLOMORPHIC VECTOR BUNDLES

Hong-Jong Kim

Let $E \to M$ be a hermitian holomorphic vector bundle over a compact (complex) hermitian manifold M of complex dimension n, and let

$$d_p''(E): 0 \to A^{p,0}(E) \xrightarrow{d''} A^{p,1}(E) \to \cdots \to A^{p,n}(E) \to 0$$

be the Dolbeault complex. Then $A^{p,q}(E)$ become a prehilbert space so that the formal adjoint δ'' of d'' and the "Laplacian" $\Delta'' = \delta'' d'' + d'' \delta''$ are defined.

Now Ray-Singer's analytic torsion for the elliptic complex $d_p''(E)$ is given by

$$\tau_p(E) := \exp\left(\frac{1}{2} \sum_{q \ge 0} (-1)^q q \zeta'_{p,q}(0)\right),$$

where $\zeta_{p,q}$ denotes the zeta function [RS71, 73] associated to the positive semi-definite elliptic operator $\Delta''_{p,q} := \Delta''|_{A^{p,q}(E)}$.

Note that there is a commutative diagram

$$d_p''(E): 0 \to A^{p,0}(E) \xrightarrow{d''} A^{p,1}(E) \to \cdots \to A^{p,n}(E) \to 0$$

$$\downarrow h^* \downarrow \qquad \qquad \downarrow (-1)^n h^*$$

$$\delta_{n-p}''(E^*): 0 \to A^{n-p,n}(E^*) \xrightarrow{\delta''} A^{n-p,n-1}(E^*) \to \cdots \to A^{n-p,0}(E^*) \to 0$$

where the vertical arrow h^* is the (conjugate linear) Hodge star $\bar{*}$: $A^{p,q} \to A^{n-p,n-q}$ coupled with the "hermitian structure" $h: E \to E^*$. Thus two complexes $d''_p(E)$ and $\delta''_{n-p}(E^*)$ have the same analytic torsion.

Received June 10, 1994.

Supported by GARC, KOSEF 1993.

Since the bottom complex $\delta''_{n-p}(E^*)$ is the adjoint of

$$0 \to A^{n-p,0}(E^*) \xrightarrow{d''} A^{n-p,1}(E^*) \to \cdots \to A^{n-p,n}(E^*) \to 0,$$

the analytic torsion of $\delta''_{n-p}(E^*)$ is equal to $\tau_{n-p}(E^*)^{(-1)^{n+1}}$ and hence we get

$$\tau_p(E) = \tau_{n-p}(E^*)^{(-1)^{n+1}}.$$

Now we apply the above consideration to the trivial line bundle E to obtain the following theorem.

THEOREM. Let M be a compact complex manifold of even dimension with the trivial canonical line bundle K_M . Then the analytic torsion of the Dolbeault complex

$$0 \to A^{0,0} \xrightarrow{d''} A^{0,1} \to \cdots \to A^{0,n} \to 0$$

is identically equal to 1 for any hermitian metric on M.

References

[RS71] D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian Manifolds, Adv. Math. 7 (1971), 145-210.

[RS73] _____, Analytic torsion for complex manifolds, Ann. of Math. 98 (1973), 154-177.

Department of Mathematics Seoul National University Seoul 151-742, Korea