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H-FUZZY SEMITOPOGENOUS PREORDERED SPACES

S. H. CHUNG

1. Preliminaries

Throughout this paper we will let H denote the complete Heyting
algebra (H,V, A, ) with order reversing involution *. 0 and 1 denote
the supremum and the infimum of @, respectively. Given any set X,
any clement of HX is called H-fuzzy set (or, simply fset) in X and
will be denoted by small Greek letters, such as p,v, p,o. HX inherits a
structure of H with order reversing involution in natural way, by defining
V, A, * pointwise (same notations of H are usual). If f is a map from
aset X toaset Y and u € HY, then f7'(p) 1s the f.set in X defined
by f~H(u)z) = u(f(z)). Also for ¢ € HX, f(o) is the f.set in ¥
defined by f(o)(y) = sup{o(z) : f(z) = y} ([4]). A preorder R on a
set X is reflexive and transitive relation on X, the pair (X, R) is called
preordered set. A map f from a preordered set (X, R) to another one
(¥Y,T) is said to be preorder preserving (inverting) if for z,y € X, zRy
implies f(z)T f(y) (resp. f(y)Tf(z)).

For the terminology and notation, we refer to [10, 11, 13] for category
theory and (7] for H-fuzzy semitopogenous spaces.

2. Category PHFS and its subcategories

A H-fuzzy semitopogenous preordered space (or, simply phfs.space)
is a triplet (X, S, R) consisting of a set X, a hfs.structure S ([7]) and a
preorder R on X.

With PHFS we will denote the category whose objects arc phfs.spaces
and whose morphisms are continuous preorder preserving maps.

Let HFS denote the category of H-fuzzy semitopogenous spaces and
continuous maps, and let PORD denote the category of preordered sets
and preorder preserving maps.
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We note that PHFS is the meet category of HFS and PORD, i.e.,
PHFS=HFS A PORD (see [12] for the meet categories of two categories).

Since HFS and PORD are both topological ([7], [5]), by [12], one has
the following:

THEOREM 2.1. PHFS is a topological and cotopological category.
Using the above theorem, one has the following:
COROLLARY 2.2. PHFS is complete and cocomplete.

NOTATION. Let ¥ be an ordinary operation ([7]). We will let *-PHFS
denote the full subcategory of PHFS consisting of those phfs.space (X, S,
R) with S = S*¥.

THEOREM 2.3. (1) If* is coarser than !, then '-PHFS is coreflective
in *-PHFS.

(2) Let * be a symmetrical elementary operation. The **-PHFYS is
closed under the formation of initial sources in *-PHFS.

Proof. (1) Let (X,S,R) € *-PHFS. It is clear that S" is !-hfs.struc-
ture on X and the identity map 1x : (X, S, R) — (X, S, R) is a contin-
wous preorder preserving map. Take any (Y, V,T) in '-PHFS and any
continuous preorder preserving map f : (Y,V,T) — (X,S,R). Then
FFUSH = (f~YS) < V. Since V! =V, f:(Y,V,T) = (X,S",R) is
a continuous preorder preserving map. This completes the proof.

(2) Suppose that (fi : (X, S, R) — (Xi, Si, R;);er is an initial source in
¢_PHFS. Since PORD is closed under initial sources, it is enough to show
that S = 5°. Since *®-HFS is coreflective in ®-HFS, § = (Uf; 1 (S;))°.

Let C= (U,-epfi_l(lj,-))“, where C;€ S; (1 € F) and F is an nonempty
subset of I.

£ = (Uier fi(C)) U (Vier f7H(C0)7)"
= ((Uier £ (Ca)) U (Vier £ (ED)™
Since ¢ is symmetrical and (X;, S;, R;) € **-PHFS, C**=C. This com-
pletes the proof.

DEFINITION 2.4. In a preordered set (X, R), a fset pu in X will be
called increasing (decreasing) if for z,y € X, zRy implies p(z) < p(y)

(resp. pu(y) < p(z)) in H.
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REMARK 2.5. (1) If {g; : i € I} is a nonempty family of increasing
(decreasing) f.sets in a preordered set X, then V{y; : ¢ € I} and A{y; :
¢ € I'} are both increasing (resp. decreasing). |

(2) For any fset u in a preordered set X, i(p) = A{p: pu < p and p
is an increasing f.set in X} is the smallest increasing fset containing ,
and d(g) = A{p: p < p and pis a decreasing fset in X} is the smallest
decreasing fset containing .

DEFINITION 2.6. A phfs.space (X, S, R) will be called increasing (de-
creasing) if for any <€ S, p K p implies that there exists <;€ S such
that 4 <1 ¢ < p for some suitable increasing (resp. decreasing) fset
o in (X, R).

We will let I(D) denote the set of all increasing (resp. decreasing)
f-sets in a preordered set X.

LEMMA 2.7. Let X be a preordered set. Then one has the following:

(1) We define a relation A on HX as follows: plp iff there exists
o € I such that p < o < p. Then {A} is an increasing *-hfs. structure
on X.

(2) We define a relation on V on HX as follows: uVp iff there exists
o € D such that p < 0 < p. Then {V} is a decreasing ®-hfs.structure on
X.

Proof. (1) Since 0 and 1 are increasing f.set in X, 0AQ and 1A1 and
hence A satisfies SO1) in (7). SO2) and SO3) in (7] are immediate from
definition of A. It follows from 2.5.1 that A is a biperfect fs.order on X.
It is clear that {A} satisfies S1) in [7]. Suppose pAp. Then u <o < p
for some o € I. Since Ao, pAoAp. Thus A satisfies S2) in [7]. This
completes the proof.

(2) This is analogous to (1).

THEOREM 2.8. Let S be a hfs.structure on a preordered set X. Then
one has the following:

(1) S is increasing iff S < {A}.

(2) S is decreasing iff S < {V}.

(3) A=V ‘

Proof. (1) (=) Take any <€ S and let u4 < p. Since S is increasing,

there exists C€ S such that y T o C p for some o € I. Since o € I, by
502) in 7], pAp. Thus S < {A}.
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(&) Take any <€ S and let p < p. Then there exists C& S such
that 4 C 0 C v C p for some o, v € HX. Since S < {A}, p C 8 C p for
some 8 € I. Thus S is increasing.

(2) This is analogous to (1).

(3) This follows from the fact that o € I iff 0* € D.

PROPOSITION 2.9. (1) A hfs.structure coarser than an increasing (de-
creasing) hfs.structure is also increasing (resp. decreasing).

(2) A hfs.structure S is increasing (decreasing) iff so is each of the
structures S9, SP, 59 St St St4 S4P and S,

(3) A hfs.structure S is increasing iff S¢ is decreasing.

(4) If f is a preorder preserving map of a preordered set (X, R) to a
increasing (decreasing) phfs.space (Y, S,T), then (X, f~'(S),R) is also
increasing (resp. decreasing).

(5) If f is a preorder inverting map of a preordered set (X,R) to a
increasing (decreasing) phfs.space (Y, S,T), then (X, f~'(S),R) is also
decreasing (resp. increasing).

Proof. (1) Suppose S is an increasing (decreasing) hfs.structure and
S” < S. Since < is a transitive relation, S is increasing (decreasing).

(2) Let @ be one of 9,7, 9P bt 19P and G is increasing (decreasing)
iff § < {A} (S < {V}iff §* < {A} (5* < {V}) iff §° is increasing
(decreasing).

(3) S is increasing iff § < {A} iff §¢ < {A°} iff §¢ < {V} iff Sis
decreasing,.

(4) Suppose (Y,S,T) is increasing. Take any C€ S and suppose
uf'(C)p. There exists <€ S such that pf ' (<) f71(o)f~!(K)p for
some ¢ € I. Since f is preorder preserving and ¢ 1s an increasing
(decreasing) f.set in Y, f~!(0) is an increasing (decreasing) f.set in X.
Thus (X, f~1(S), R) is increasing (decreasing).

(5) This is analogous to (4).

Notation let IPHFS (DPHFS) denote the full subcategory of PHFS

determined by increasing (decreasing, resp.) preordered hfs.spaces.
THEOREM 2.10. IPHFS is bireflective in PHF'S.

Proof. For (X,S,R) € PHFS, T(S) = {C:C 1s a fs.order on X
and there is a fs.order <€ S which is finer than T} and let $* = {<:
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there exists a sequence (<) in T(S) such that « =<« and for each
n, ¢ <, p implies that there exists an increasing f.set o in X such that
B Lnty1 0 Loy p}. It is clear that S* is an increasing hfs.structure on
X and 1x : (X,5,R) — (X, 5", R) is a continuous preorder preserving
map. Let (Y,U,T) € IPHFS and suppose f : (X,S,R) — (Y,U,T) is a
continuous preorder preserving map. Then f~'(U) < S. Since f~1(U)
is increasing, f~'(U) < S*. This completes the proof.

For any (X,S,R) € PHFS, S* will be called the upper hfs.structure
of (X,S R).

REMARK. Since IPHFS and DPHFS are isomorphic, by the above
theorem, DPHFS is also bireflective in PHFS. We will let S¢ denote the
upper hfs.structure of (X, S, R°P), which is called the lower hfs.structure
of (X, S, R).

THEOREM 2.11. Let * be an ordinary operation such that S* is
coarser than S' for all hfs.structure S on a set X. Then for each
(X,S,R) € PHFS, we have the following:

(1) Suk < Sk,

(2) Sk < Gkd,

(3) if S = S*, then S* = §*f and §¢ = §i*,

Proof. (1) Since S* < S, S*F < S*. By (2.9.2) S*® is increasing. It
is follows from (2.9.1) that S** is increasing. Thus S**f < §k¥,

(2) This is similar to (1).

(3) This is immediate from (1) and (2).

THEOREM 2.12. For any (X,S,R) € PHF'S, we have the following:
(1) §4¢ = S°* and S¥° = §°d,
(2) if S is symmetrical, then S* = §% and §¢ = S¥.

Proof. (1) Let C € S%. There exists <€ S% such that C = «¢. Since
<€ §¢, there exists a sequence (<,) in S such that < =<, and for
each n, 4 <, p implies that 4 ,41 0 K, 41 p for some decreasing fset
in X. Thus C € S, and hence S% C 5. By the same way, the inverse
inclusion holds. The second part is similar to the first part.

(2) This is immediate from (1).

Let < be fs.order on a set X. We will let <*(? denote {<}*(4).
Then p <*@ p iff there is map ¢ : E — I(D) such that r < s implies
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#(r) < #(s). #(0) = p and ¢(1) = p, where E denotes the set of all
dyadic rationals between 0 and 1, i.e., the set of all rational numbers
r=n/2™ nme€N,n<2™

THEOREM 2.13. For any (X,S5,R) € PHFS, we have (1) S*™* = gut
and (2) S = St

Proof. (1) Let <= S' and p <* p. Then there is a sequence (<, )
such that € =<«, for all n € N and for each n, u <, p implies that
p Lnt1 0 Knt1 p for some o € I. Thus pS*'p, and hence S** < St
Since §* < 5, §** < S*. The inverse inequality can be found in (2.11.1).

(2) is similar to (1).

3. ?-Convex spaces

Throughout this section all spaces are assumed to be phfs.spaces, and
will denote an elementary operation.

In a preordered set (X, R), u € HX will be called convex if u = o A p,
where o, p are increasing, decreasing f.sets in (X, R), respectively.

a

REMARK. (1) If {g; : ¢ € I} is afamily of convex f.sets in a preordered
set (X, R), then A{p; : i € I} is also a convex.

(2) Let p be a f.set in preordered set (X, R). Then ¢(u) = ¢(u) Ad(p)
is the smallest convex f.set containing p.

(3) Let p be a convex fset in a preordered set (X, R). If zRzRy and
p(z) A p(y) > 0, then pu(z) > 0.

LEMMA 3.1. For any order family A on a set X and any elementary
operation ¢, one has the following:

(1) A9 = Ae9e = A999°,

(2) Ata — Atat — Aata :Atata'

(3) A®t = A's.

Proof. (1) Since * and 9% are ordinary operations, A9%9% = A9° <
A%, Since 9 and ® are ordinary operations, A% < A9%9%  Thus
A9 — Aege — Agage

(2) Since * is an elementary operation,
and hence A'* = A%t = Aote = Aleta

(3) It follows from the fact that for any order family A on a set X,
U{<:<e A} = (U{<: <€ A})"

e is an ordinary operation
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LEMMA 3.2. For a nonempty family {A; : 1 € I} of order families on
a set X, one has the following:

(1) (U{A; : 7 € TH* = (U{A} : i € I})*, where * is an ordinary
operation.

(2) (U{A;:i e I})9° = (U{A?:ie I})9e.

(3) if I = {1,2}, then (A, U A2)9" = (AL U AL)Y.

Proof. (1) Let A = (U{A; : ¢ € I}). Then A; C A implies 4; < A,
so that we get from 03) in (7], A¥ < A* and U{4* : i € I} < 4F,
(U{AF : i € I})F = A% = A¥ from 02) in [7]. On the other hand, we
get from 01) in [7] A; < A¥, A < U{AF:i eI}, A% < (U{AF:ie ID*

(2) This follows from (3.1.1) and (1).

(3) It is clear that (A; U A)?" = (4; U A2)"Y. Since ! is an ordinary
operation, by (1), (A} U A}) = (A} U A})'9 = (4, U 4,)". Since (At U
Aé)g = {Ai’Aé’Ai U Aé)’ (AU A2)gt = (Ai U Aé)g'

DEFINITION 3.3. A space (X, S, R) will be called:
(1) almost *-convex if S < (S* U §¢)9¢,
(2) *-convex if § = (S* U §¢)92,

PROPOSITION 3.4. (1) A space (X, S, R) is almost ®-convex iff (S, U
52)9 < § < (51U 85,)9%, where 51(S;) is an increasing (decreasing)
hfs.structure on (X, R).

(2) A space (X, S, R) is “-convex iff § = (S; U S3)9%, where S,(S,) is
an increasing (decreasing) hfs.structure on (X, R).

(3) If a space (X, S, R) is almost ®-convex then (X, 5%, R) is ®-convex.

(4) If® is an elementary operation such that S* =~ §*% apd §e¢ =~ Sde
for any hfs.structure S on a set X, then the converse of (3) holds.

(5) Let (X, S, R) be a space with S = §°. (X, S, <) is almost ®-convex
iff it 1s *-convex.

(6) Let ¢ be an elementary operation such that S® is coarser than
S¢ for any hfs.structure S on a set X. If a space (X,S,R) is almost
®-convex, then it is almost ©-convex.

(7) If a space (X, S, R) is (almost) ®-convex and ¢ is an elementary
operation such that ®¢ is also elementary operation, then (X,S¢ R) is
(almost) “®-convex.

Proof. (1) The necessity is obvious. Conversely, if this condition is

fulfilled by S, then $1(S;) < S*(S5?), therefore (S, US,)9% < (S*US?)92,
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so that S is almost *-convex.

(2) The necessity is obvious. Conversely, if this condition is fulfilled
by S, then Sy (S;) < S*(S%), therefore § = (S, U §,)9% < (S* U §)9¢.
But §% = (5, U $3)9%% = (S; U S;)9* & S, so that S is *-convex.

(3) If (X, S,R) is almost ®-convex, then, by (1), (S U S2)! < S <
(S1 U S2)9%, where 51(S5,) is an increasing (decreasing) hfs.structure on
(X,R). Since ® is an elementary operation, (5; U S5;)9% < §* < (5, U
S3)9%% = (5,US;)%® and hence (5;,US;2)9* = §°. By (2), S° is *-convex.

(4) If (X, 5%, R) is ®-convex, then §¢ & (§%* U §°%)92, Since S%* =
S and §%¢ = §9¢ Ge =~ (Sue Y §9)92 By Lemma 3.1.1 and 3.2.1,
§% = (§* U §9)9°. Since S < §%, § < (S* U S%)9¢. Thus (X, S, R) is
almost *-convex.

(5) It is immediate from the definition 3.3.

(6) If (X, S, R) is almost ®-convex, then § < (S* U §¢)9%. By the
assumption, S < (S* U §9)9% < (S* U §9)%¢. Thus (X, S, R) is almost
¢-convex.

(7) If (X,S,R) is almost ®-convex, then S < (S* U S%)9%, therefore
5S¢ < (S* U S§%)9%. Since (S* U S?%) < S, (S*USY? < S°. By
(1), (X,85¢,<) is almost *-convex. If (X,S,R) is *-convex, then § =
(S* U §%)9°, and hence S® = (S* U S9)9°¢. By (2), (X,S% R) is *°-

convex.

THEOREM 3.5. Let (X,S,R) be a almost ®-convex space. Then
(X, S', R) is almost ®-convex, and hence (X, S'**, R) is *-convex.

Proof. If (X, S, R) is almost ®-convex, then S < (S* U §¢)9%, and
hence S < (S* U §4)9ete = (Sut Yy §4t)92 ((3.1.2) and (3.2.3)). By
(2.13), S < (S*™S*)9e. Thus (X, S*, R) is almost *-convex. The second
part is immediate from (3.4.3).

NotaTiON. *-APHFS (*-CPHF) denotes the full subcategory of
PHFS determined by all almost ®-convex (*-convex, resp.) spaces.

THEOREM 3.6. (1) *-APHFS is bireflective in PHFS.
Proof. Suppose (f; : (X,S,R) — (X, S:, Ri))ier 1s an initial source in
PHFS and each (X;, S;, R;) € “-APHFS. Then S = (%) = (U{f~1(S:) :

i € I})9 and zRy iff fi(z)R.fi(y) for all © € I. Since for each : € I,
(X:,Si, R;) € *-APHFS, (Si1 U Si2)? < Si < (Si U Si2)9%, for some
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increasing (decreasing) hfs.structure S;; (Siz, resp.) on (X, R). For each
t€ I, f7H (S USiz)?) = (£ (S US))? = (71 (Su) U f7(S2))? <
f1(S;) from 06) in [7].

(**) = U{(fi_I(SiI U fi—](sﬂ))g 1 €1}
< (U{FTHSa) U fTY(Sin))? i e I})*
= ((U{fi—l(S“) 1€ lhu (U{fi'l(sﬂ) 11 € 1})?

from (3.2.1). Thus (x*) < (). Since f,7'(S;) < 71 (S U Si2)?%) (2 €
I), (x) < (U{fl—_l((sn U Si2)9%) : 7 € I})9. From 01) and 06) in 7] and
(3.2.1),

() < ({71 (Sa) U £71(Siz))** 1 € I})*
= ((V{f71(Sa) i € IN U7 (Sia) i € I}))*".

By (2.10) and (3.2.1), (X, S, R) is almost *-convex. This completes the
proof.

The following lemma is the result in [6].

LEMMA 3.7. Let G : C — D be a functor and A (B, resp.) a sub-
category of C (D), resp.) such that G has a restriction E: A — B, ie.,
GoH = Fo FE, where H, F are embedding functors. Suppose

(1) B is a coreflective (reflective, resp.) subcategory of D.

(2) E: A— Bisfulland G : C — D is faithful and full; and for each
C € C, there is A € A such that E(A) is isomorphic to B-coreflection
(B-reflection, resp.) of G(C). Then A is a coreflective (reflective, resp.)
subcategory of C.

The following is now immediate from the above Lemma, Theorem
2.3.1, Theorem 3.6.

COROLLARY 3.8. (1) *-CPHFS is bireflective in *-PHFS.
(2) *-CPHFS is coreflective in *-APHFS.

THEOREM 3.9. Let * be a symmetrical elementary operation. Then
one has the following:
(1) A space (X, S, R) is (almost) ®-convex iff (X, 5, R) is (almost)

% _convex.
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(2) If (X, S, R) is almost ®-convex, then (X, S®, R) is almost *-convex,
and hence (X, $**, R) is *-convex.

Proof. (1) If (X, S, R) is almost ®-convex, then § < (S*US%)9¢. Then
§¢ < (8% U §4)e9e = (Sue U §9¢)9e. By (2.12.1), (X, S°, R) is almost °-
convex. The converse is similar to the necessity. If (X, S, R) is ®-convex,
§e = (S U §)98e = (S¥ey §¥)9e. By (2.12.1), (X, S°, R) is *-convex.

(2) This is immediate from (1), (3.6) and (3.2.3).

THEOREM 3.10. Let (X,S,R) be a symmetrical space. Then the
following statements are equivalent:

(1) (X, S, R) is almost *-convex.

(2) there is an increasing structure Sy on X such that S < § < S7°.

(3) there is an decreasing structure Sy on X such that S§; < § < S7°.

Proof. Suppose (X, S, R) is almost *-convex, then by (2.12.2), one has
S < (S*uU S = (S* U S*e)9e = S¥se. Clearly S** < S. Hence S*

will do the job for S;. The other implications are obvious.

THEOREM 3.11. Let (X,S,R) be a symmetrical space. Then the
following statements are equivalent:

(1) (X, S, R) is *-convex.

(2) S = S;°, where S is increasing on (X, R).

(3) S = S;°, where S; is decreasing on (X, R).

Proof. It is analogous to (3.10).

THEOREM 3.12. Let (X, S, R) be a space such that § = S* where
k=a op ¥=te for an elementary operation ®, which fulfills «® is coarser
than «® for any semitopogenous order <. Then one has the following:

(1) (X, S, R) is ®-convex iff there exist hfs.structures $; = S¥ and
Sy = S¥ such that $,(S;) is increasing (decreasing) on (X, R), and
S = (5 U5;)9°.

(2) If S is symmetrical, then (X, S, R) is ®-convex iff S = S3* for an
increasing or decreasing hfs.structure S; = S¥ on (X, R).

Proof. (1) The sufficiency of the condition is clear even in the case of
k=ta (see (3.4.2) and (3.2.3)). Conversely, if (X, S, R) is ®-convex, then
S = gk > (Suy Sk = (Svku Sik)sk ((3.1.2), (3.2.2) and (3.2.3)). Put

Sy = S** and S, = S%. ¥ is an ordinary operation, for which S* is
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coarser than S, thus from (2.11.1) and (2.11.2), §; = S* and S, = §¢,
so that S5;(S,) is increasing (decreasing, resp.). Finally from (02) or [6],
51 = S]k and 52 = Séc

(2) Suppose that the condition is satisfied by S. For ¥=¢ S is ®-convex
by (3.11). For ¥¥!% we have § = §5!* = §!¢ ((3.1.3)), thus we can refer
to (3.11) and (2.9.2). Conversely, let (X, S, R) be ®-convex and S = §;°
for an increasing Sy ((3.11.2)). Then S & S is coarser than %% = §° =
S, therefore S = S* 2 Gusek From (3) in [7] and (2.11), S* = S**, thus
Si1 = S** is increasing, S; = SF and §; = Susk = Guksk — gk

NOTATION. Let p be a fset in a set X. Then p,(y) = p(z) ify =«
and p(y) = 0if y # z, and p*(y) = p(z) f y = ¢ and p*(y) = 1 if
y#z.

LEMMA 3.13. Let be X a set. Then one has the following:

(1) Let {<;: ¢ = 1,...,n} be a finite sequence of fs.orders on X.
Then (U{<K;: i =1,...,n})% is coarser than (U{<?®: i = 1,...,n})o°.

(2) Let {<;i: i =1,...,n} be a finite sequence of biperfect fs.orders
on X. Then (U{<;:i=1,...,n}H)? = (U{K;: i =1,...,n})".

Proof. (1)Put « =U{K;: 1=1,...,n}, ;= U{«P1=1,...,n}.
Suppose p K9 p. Then, for each z € X, u, <7 p, thus for each y € X,
pr <9 p¥. Hence p, < p¥ for all z,y € X. Thus, for each y € X,
Vipe : oz < p} <7 pY and hence (%) <P (Vips - pz i pY)})"
Then (p)* <f M(V{pz : p i p*})" 11 =1,...,n} = (V{V{p, :
pr L pYYre=1,...,n})* = p* and hence V{(p¥)* : y € X} <5° p*.
Since p* = V{(p¥)* 1 y € X}, p <IP° p. Thus < is coarser than < {7°.

(2) Put « = U{<K;: 1 = 1,...,n}. By (1), <%= <9 and hence
<9 is a biperfect fs.order on X finer than <. By (1.1.3) in [7], < is
coarser than <97. On the other hand, < is coarser than <® ((1.1.3) in
[7]). Thus < is coarser than <%= %= «®. Thus €= «*.

THEOREM 3.14. Any ®-convex space is 9P-convex.

Proof. If (X,S,R) is b-convex, then § = S* Because of (3.13.2)
and (3.12.1) § = (5, U S3)® = (51 U 53)99, where S;(S,) is increasing
(decreasing) biperfect hfs.structure on (X, R).

NOTATION. We will let C, denote the family {«, ,: p <0 <1, ois
convex}.
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THEOREM 3.15. A space (X,S,R) is almost ®-convex iff for any
K € S, there is a family C C C, such that {<} < C* < (§; U §7)%¢,
where S1(S,) is increasing (decreasing) hfs.structure on (X, R) such that
(S] U Sz)g < S.

Proof. Since (X,S,R) is almost *-convex, (57 U S;)Y < S < (5 U
S,)9% for S1(S2) is an increasing (decreasing) hfs.structure on (X, R).
If <€ 51(S,) and <;€ S1(52) are such that < is coarser than <?,
then 4 <« p implies 4 €; v <3 p, and we can find an increasing
(decreasing) fset o in (X, R) for which v < ¢ < p. Then p <; o,
hence C¢ = {4 @ <1 0, 0 is increasing (decreasing)} is a family of
elementary fs.orders such that C C C, (increasing or decreasing f.sets are
convex), and {<} < C** < {«¢}. By the same way, if €€ 51(S2) and
<01€ 51(S3) are such that < is coarser than 37, then there exists C¥,
such that {« 0} < C¥, < {«§;}. Put C = C4 UC«o. Then C C Cy,
further C'* = (C UC«o )" = (C2UCE,)" < (51U S2)?¢. Then converse
is obvious.

COROLLARY 3.16. If 9-space (X, S, R) is almost ‘-convex then for
every < € S there exists €1€ S such that p < p implies p < VI, a;,
V™. 0; < p, where m is a suitable natural number, o; <; 0;, and o; 1s
convex in (X, R) for each 1 <1 < m.

Proof. Suppose that (X, S, R) is almost ‘-convex, and put < € S.
There exists C C C, and <;€ S such that {«} < C' < {«;}. Disre-
garding the trivial cases of p =0 or p =1, from p < p,

p <UL NI ey, UL DL 045 <o,

where 0,; is convex and a;; <; 035 (1 <i<m, 1 <5 <n;)by (2.1) in
[8]. Then o; = A?;iaij is convex, and o; = ATl ai; we have p < Vay,
A™ = ;0; < p, further a; <; 0}, because < is topogeneous fs.order.

In the rest of this section we suppose that all spaces are ?-phfs.spaces.

DEFINITION 3.17. A space (X, S, R) will be called symmetrizable if
there exists a symmetrical *-convex S} on (X, R) such that S; < § < SF.

The following is immediate from the above definition, (3.4.1), (3.4.3)
and (3.10).
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REMARK. (1) If (X, S, R) is a symmetrizable space, then it is almost
P-convex, and hence (X, S?, R) is P-convex.

(2) If (X,S,R) is *-or almost P-convex symmetrical space, then it is
symmetrizable.

NOTATION. Let SyPHFS denote the full subcategory of 2-PHFS de-
termined by symmetrizable spaces. ’

THEOREM 3.18. SyPHFS is bireflective in -PHFS.

Proof. Suppose ((f; : (X,S,R) — (X;,Si, R;))ies is initial source in
9-PHFS and each (X;, S, R;) € SyPHFS. Then S = (Uf;(5:))%9. For
each 1 € I, there exists symmetrical *-convex structure S;, on (X;, R;)
such that S;; < S; < SP. Then (Uf;(Si1))97 < S < (U(f71(Si)P)99?.
Since (U(f;'(Si1)?)?7 < (U(f7'(511))%%, S < (U(f7"(S0))?%. From
Theorem 2.12 in [7] and (3.6.2), (Uf;'(S;))%9 is symmetrical ‘-convex
structure on (X, R), and hence (X, S, R) is symmetrizable.

References

—

. G. Birkoft, Lattice Theory, Amer. Math. Soc. 1967.
. D. C. J. Burgess and M. Fitzpatrick, Syntopogenous preordered spaces, Math.
Proc. Camb. Phil. Soc. 80 (1976), 71-79.
, Syntopogenous preordered spaces (I1), Math. Proc. Cambridge Philos.
Soc. 83 (1978), 19-24.
4. C. H. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.

N

5. , On relational spaces, J. Korean Soc. Math. Ed. 24 (1985), 25-39.

6. , Almost a-convex quasi-ordered syntopogenocus spaces, Kyungpook
Math. J. 31 (1991), 235-241.

7. , Category of H-fuzzy semitopogenous spaces, Journal of Fuzzy Logic
and Intelligent Systems 3 (1993), 19-26.

8. , Totally bounded H-fuzzy semilopogenous spaces, (submitted).

9. A. Csaszar, Foundation of General Topology, The Macmillan Co., New York,
1963.

10. H. Herrlich, Topological funclor, Gen. Top. Appl. 4 (1974), 125-142.

11. H. Herrlich and G. E. Strecker, Category Theory, Allyn and Bacon, Boston,
1973.

12. S. S. Hong and L. D. Nel, Speciral dualities involving mized siructure, Cat-
egorical aspects of Topology and Analysis, Lecture Notes in Math., vol. 43,
Springer-Verlag, 1982, pp. 198-204.

13. C. Y. Kim, S. S. Hong, Y. H. Hong and P. U. Park, Algebras in Cartesian
closed topological categories, (1979), Yonsei Univ.



700 S. H. Chung

14. K. Matolcsy, Syntopogenous with preoder 1, Acta. Math. Hungar 43 (1984),
347-363.

Department of Mathematics
Kyungwon University
Songnam 461-701, Kyonggido



