A NOTE ON ITO PROCESSES

Won Choi

1. Introduction

Let (Ω, \mathcal{F}, P) be a probability space with \mathcal{F} a σ -algebra of subsets of the measure space Ω and P a probability measure on Ω . Suppose a > 0 and let $(\mathcal{F}_t)_{t \in [0,a]}$ be an increasing family of sub- σ - algebras of \mathcal{F} . If r > 0, let J = [-r,0] and $C(J, \mathbf{R}^n)$ the Banach space of all continuous paths $\gamma: J \to \mathbf{R}^n$ with the sup-norm $\|\gamma\|_C = \sup_{s \in J} |\gamma(s)|$ where $\|\cdot\|_C$ denotes the Euclidean norm on \mathbf{R}^n . Let E and F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T: E \to F$ with the norm $\|T\| = \sup\{|T(x)|_F : x \in E, |x|_E \leq 1\}$.

Denote by $\mathcal{L}^2(\Omega, C(J, \mathbf{R}^n))$ the space of all \mathcal{F} -measurable stochastic processes $\theta: \Omega \to C(J, \mathbf{R}^n)$ such that the function $\omega \in \Omega \to \|\theta(\omega)\|_C \in \mathbf{R}^n$ is of class \mathcal{L}^2 . Then $\mathcal{L}^2(\Omega, C(J, \mathbf{R}^n))$ is complete when endowed with the semi-norm

$$\|\theta\|_{\mathcal{L}^2(\Omega,C)} = [\int_{\Omega} \|\theta(\omega)\|_C^2 \, dP(\omega)]^{\frac{1}{2}}.$$

One may also look at the space $C([0,a], \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n)))$ of all \mathcal{L}^2 -continuous $C(J, \mathbf{R}^n)$ -valued processes $y : [0,a] \to \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n))$; again this is complete under the semi-norm

$$||y||_{C([0,a],\mathcal{L}^2(\Omega,C))} = \sup_{t\in[0,a]} ||y(t)||_{\mathcal{L}^2(\Omega,C)}.$$

Denote by $C_A([0,a], \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n)))$ the set of all (\mathcal{F}_t) -adapted $C([0,a], \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n)))$ -valued processes. For a given initial process $x(0), y(0) \in \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n))$ we may seek solutions $x, y \in \mathcal{L}^2(\Omega, C([-r,a], \mathbf{R}^n))$ of the stochastic functional differential equations

$$x(\omega)(t) = x(\omega)(0) + (\omega) \int_0^t g_1(u, x_u) dz_1(\cdot)(u),$$

Received January 25, 1994.

732 Won Choi

$$y'(\omega)(t) = y'(\omega)(0) + (\omega) \int_0^t g_2(u, y_u, y_u') dz_2(\cdot)(u)$$

under the following conditions.

Condition (A). The noise processes $z_1, z_2 : \Omega \to C([0, a], \mathbf{R}^m)$ are expressible in the forms

$$z_i(\omega)(t) = \lambda_i(t) + z_m^i(t) \ (i = 1, 2)$$

where $\lambda_i : [0, a] \to \mathbf{R}^m$ are Lipschitz functions and $z_m^i : \Omega \to C([0, a], \mathbf{R}^m)$ are separable martingales adapted to $(\mathcal{F}_t)_{t \in [0, a]}$ and is such that there are constants $K_i > 0 (i = 1, 2)$ with

$$|E(z_m^i(\cdot)(t_2) - z_m^i(\cdot)(t_1)|\mathcal{F}_{t_1})| \le K_i(t_2 - t_1),$$

$$E(|z_m^i(\cdot)(t_2) - z_m^i(\cdot)(t_1)|^2|\mathcal{F}_{t_1}) \le K_i(t_2 - t_1)$$

a.s. whenever $t_1, t_2 \in [0, a]$ and $t_1 \leq t_2$.

Condition (B). The coefficient processes g_1 , g_2 are continuous and also uniformly Lipschitz in the sense that there exist constants L_1 , $L_2 > 0$ with

$$||g_1(t,\xi_2) - g_1(t,\xi_1)||_{\mathcal{L}^2} \le L_1 ||\xi_2 - \xi_1||_{\mathcal{L}^2},$$

$$||g_2(t,\xi_2,\xi_2') - g_2(t,\xi_1,\xi_1')||_{\mathcal{L}^2} \le L_2 ||\xi_2 - \xi_1||_{\mathcal{L}^2}$$

for all $t \in [0, a]$ and all $\xi_1, \xi_2 \in \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n))$.

Condition (C). For each process $\theta \in C_A([0,a], \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n)))$ the process

$$t \in [0, a] \mapsto g_1(t, \theta(t)) \in \mathcal{L}^2(\Omega, L(\mathbf{R}^m, \mathbf{R}^n)),$$

 $t \in [0, a] \mapsto g_2(t, \theta(t), \theta'(t)) \in \mathcal{L}^2(\Omega, L(\mathbf{R}^m, \mathbf{R}^n))$

is also adapted to $(\mathcal{F}_t)_{t \in [0,a]}$.

In [2], it is well known that if Ito processes x and y are well defined, then x and y have same transition functions under the Wasserstein metrics when time runs infinite. In this note, we prove the linear property of process y. And as the application of [2], we derive the inequality on Ito processes x and y under the \mathcal{L}^2 -norm, similar to Lipschitz condition.

2. The Main Results

We begin with:

LEMMA 1. Suppose that $z_i(\omega)(t)$ (i=1,2) are processes satisfying Condition (A). Let $g:[0,a]\to \mathcal{L}^2(\Omega,L(\mathbf{R}^m,\mathbf{R}^n))$ be an \mathcal{L}^2 -continuous process adapted to $(\mathcal{F}_t)_{t\in[0,a]}$. Then there are constants $M_i>0$ (i=1,2) such that

$$E(\sup_{t \in [o,a]} |\int_0^t g(u) \, dz_i(\cdot)(u)|^2) \le M_i \int_0^t E(\|g(u)\|^2) \, du.$$

Proof. Write, by the Condition (A)

$$\int_0^t g(u) dz(\cdot)(u) = \int_0^t g(u) d\lambda_i(u) + \int_0^t g(u) dz_m^i(\cdot)(u).$$

The first integral on the right-hand side is a Riemann-Stieltjes integral for a.s. ω . Since z_m^i are martingale with a.s. sample path continuous, so is the second integral on the right-hand side of previous integral representation. We therefore have, by the martingale inequality ([4], [5])

$$\begin{split} E(\sup_{t \in [0,a]} |\int_0^t g(u) \, dz_m^i(\cdot)(u)|^2) &\leq 4E(|\int_0^a g(u) \, dz_m^i(\cdot)(u)|^2) \\ &\leq 4C_i \int_0^a E(\|g(u)(\cdot)\|^2) \, du \end{split}$$

where $C_i = 2K_i a^{1/2} + K_i^{1/2}$.

If $r_i > 0$ (i = 1, 2) is the Lipschitz constant for λ_i , then since

$$|\int_0^t g(u) d\lambda_i(u)|^2 \le r_i^2 a \int_0^t |g(u)|^2 du$$

we have

$$E(\sup_{t \in [0,a]} |\int_0^t g(u)(\cdot) \, d\lambda_i(u)|^2) \le r_i^2 a \int_0^a E(|g(u)(\cdot)|^2) \, du.$$

734 Won Choi

Therefore the result follows from the fact that

$$E(\sup_{t \in [0,a]} |\int_0^t g(u) \, dz_i(\cdot)(u)|^2) \le 2E(\sup_{t \in [0,a]} |\int_0^t g(u)(\cdot) \, d\lambda_i(u)|^2)$$

$$+ 2E(\sup_{t \in [0,a]} |\int_0^t g(u) \, dz_m^i(\cdot)(u)|^2).$$

We recall ([3], [4], [5]) that for any process $x(0) \in \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n); \mathcal{F}_{t_1})$, there exists only solution $x \in \mathcal{L}^2(\Omega, C([t_1 - r, t_1], \mathbf{R}^n))$ such that

$$x(\omega)(t) = x(\omega)(0) + (\omega) \int_t^t g_1(u, x_u) dz_1(\cdot)(u).$$

Take $y_1: [-r, a] \times \Omega \to \mathbf{R}^n$ to be

$$y_1'(t,\omega) = y'(\omega)(0)$$
 a.s.

and

$$y'_{m+1}(t,\omega) = y'(\omega)(0) + (\omega) \int_{t_1}^t g_2(u, y_{m_u}, y'_{m_u}) dz_2(\cdot)(u) \ a.s.$$

Using the inductions, simple calculations show that $\{y'_m\}_{m=1}^{\infty}$ converges to some $y' \in \mathcal{L}^2(\Omega, C([t_1-r,t_1], \mathbf{R}^n))$ and y' must satisfy the stochastic functional differential equation

$$y'(\omega)(t) = y'(\omega)(0) + (\omega) \int_{t_1}^t g_2(u, y_u, y_u') dz_2(\cdot)(u).$$

They give a family of maps

$$T_t^{t_1}: \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n): \mathcal{F}_{t_1}) \to \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n): \mathcal{F}_t),$$

$$x(0) \mapsto x_t$$

and

$$S_t^{t_1}: \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n): \mathcal{F}_{t_1}) \to \mathcal{L}^2(\Omega, C(J, \mathbf{R}^n): \mathcal{F}_t),$$

$$y(0) \mapsto y_t.$$

When $t_1 = 0$, we define T_t , S_t to be $T_t = T_t^0$, $S_t = S_t^0$.

We now meet:

THEOREM 2. Suppose that there exist $\eta_j \in C(J, \mathbf{R}^n)$, j = 1, 2, ..., k and $\{\Omega_j\}_{j=1}^k \subset \mathcal{F}_{t_1}$ of Ω such that $y(0) = \sum_{j=1}^k \eta_j I_{\Omega_j}$, where I_{Ω_j} is the indicator function of Ω_j . Then

$$S_t^{t_1}(y(0))(\omega) = \sum_{j=1}^k S_t^{t_1}(\eta_j)(\omega) I_{\Omega_j}(\omega).$$

Proof. Let $1 \leq j \leq k$. Solving the stochastic functional differential equation at $\eta_j \in C(J, \mathbf{R}^n)$, we get a solution y_{η_j} satisfying

$$y'_{\eta_j}(t) = \eta'_j(0) + \int_{t_1}^t g_2(u, y_{\eta_{j_u}}, y'_{\eta_{j_u}}) dz_2(\cdot)(u).$$

Since I_{Ω_j} is \mathcal{F}_{t_1} -measurable, then the process $g_2(u, y_{\eta_{j_u}}, y'_{\eta_{j_u}})I_{\Omega_j}$ is adapted to $(\mathcal{F}_t)_{t>t_1}$. Therefore since

$$y'_{\eta_j}(t)I_{\Omega_j} = \eta'_j(0)I_{\Omega_j} + \int_{t_1}^t g_2(u, y_{\eta_{j_u}}, y'_{\eta_{j_u}})I_{\Omega_j} dz_2(\cdot)(u),$$

it follows that by the property of stochastic integral ([3], [5]),

$$\begin{split} \sum_{j=1}^k y'_{\eta_j}(t) I_{\Omega_j} &= \sum_{j=1}^k \eta'_j(0) I_{\Omega_j} + \sum_{j=1}^k \int_{t_1}^t g_2(u, y_{\eta_{j_u}}, y'_{\eta_{j_u}}) I_{\Omega_j} \ dz_2(\cdot)(u) \\ &= y'(0) + \int_{t_1}^t g_2(u, \sum_{j=1}^k y_{\eta_{j_u}} I_{\Omega_j}, \sum_{j=1}^k y'_{\eta_{j_u}} I_{\Omega_j}) \ dz_2(\cdot)(u). \end{split}$$

Therefore by uniqueness of solutions to stochastic functional differential equation, we obtain

$$y(t) = \sum_{j=1}^{k} y_{\eta_j}(t) I_{\Omega_j}.$$

This implies that

$$S_t^{t_1}(y(0)) = y_t = \sum_{j=1}^k y_{\eta_{j_t}} I_{\Omega_j} = \sum_{j=1}^k S_t^{t_1}(\eta_j) I_{\Omega_j}.$$

736 Won Choi

We are now ready to prove the main theorem. We recall ([1]) that coefficient process g_2 is a function of two variables only under mild condition.

Condition (D). Neither g_1 or g_2 is negative and there exists constant L > 0 such that

(1)
$$||g_1(t,\xi_1) - g_2(t,\xi_2)||_{\mathcal{L}^2} \le L||\xi_1 - \xi_2||_{\mathcal{L}^2}.$$

whenever $(t,\xi_1) \in \mathcal{L}^2(\Omega, C(J,\mathbf{R}^n))$ and $(t,\xi_2) \in \mathcal{L}^2(\Omega, C(J,\mathbf{R}^{\frac{n}{2}})).$

We conclude with:

THEOREM 3. Let $y'(0) \ge 0$ and $z_2(t) \ge z_1(t)$ for all t. If g_1 and g_2 are processes satisfying condition (D), then there exists a value $s \in [0,t]$ such that

(2)
$$||T_{2+s}^1(x(0)) - S_{2+s}^1(y(0))||_{\mathcal{L}^2} \le \sqrt{2} ||x(0) - y(0)||_{\mathcal{L}^2} e^{M_i L^2(2+s)}$$
 where M_i is the constant of Lemma.

Proof. For the y-process, we have

$$y_t - y(0) = (1+s)y'(0) + \int_1^{2+s} \int_s^{1+s} g_2(t, y_t, y_t') dv dz_2(\cdot)(t-1)$$
$$= (1+s)y'(0) + \int_1^{2+s} g_2(t, y_t, y_t') dz_2(\cdot)(t-1).$$

Writing $z_3(t) = z_2(t-1)$, since

$$||T_{2+s}^{1}(x(0)) - S_{2+s}^{1}(y(0))||_{\mathcal{L}^{2}}^{2}$$

$$= \int_{\Omega} \sup_{v \in I} |T_{2+s}^{1}(x(0)(\omega)(v) - S_{2+s}^{1}(y(0))(\omega)(v)|^{2} dP(\omega),$$

we have

$$\begin{aligned} & \|T_{2+s}^{1}(x(0)) - S_{2+s}^{1}(y(0))\|_{\mathcal{L}^{2}}^{2} \\ & \leq 2 \int_{\Omega} \sup_{v \in J} |x(0)(\omega)(v) - y(0)(\omega)(v) - (1+s)y'(0)(\omega)(v)|^{2} dP(\omega) \\ & + 2 \int_{\Omega} \sup_{v \in [-2-s,0]} |(\omega) \int_{1}^{2+s+v} \{g_{1}(t, T_{t}^{1}(x(0))) dz_{1}(\cdot)(t) \\ & - g_{2}(t, S_{t}^{1}(y(0))) dz_{3}(\cdot)(t)\}|^{2} dP(\omega). \end{aligned}$$

Hence it follows from $y'(0) \ge 0$ that for i = 1, 3,

$$||T_{2+s}^{1}(x(0)) - S_{2+s}^{1}(y(0))||_{\mathcal{L}^{2}}^{2}$$

$$\leq 2 \int_{\Omega} \sup_{v \in J} |x(0)(\omega)(v) - y(0)(\omega)(v)|^{2} dP(\omega)$$

$$+ 2 \int_{\Omega} \sup_{v \in [-2-s,0]} (\omega) \int_{1}^{2+s+v} |\{g_{1}(t, T_{t}^{1}(x(0)) - g_{2}(t, S_{t}^{1}(y(0)))\} dz_{i}(\cdot)(t)|^{2} dP(\omega).$$

We therefore have, by Lemma 1 and Condition (D),

$$||T_{2+s}^{1}(x(0)) - S_{2+s}^{1}(y(0))||_{\mathcal{L}^{2}}^{2}$$

$$\leq 2||x(0) - y(0)||_{\mathcal{L}^{2}}^{2} + 2M_{i}L^{2} \int_{1}^{2+s} ||T_{t}^{1}(x(0)) - S_{t}^{1}(y(0))||_{\mathcal{L}^{2}}^{2} dt.$$

Using Gronwall's Lemma ([5]), the result follows.

REMARK. If we focus on the processes x(t) and y'(t), then we obtain the inequality similar to the Theorem, under the mild conditions: If g_1 and g_2 are processes satisfying the inequality (1) only, then the inequality (2) becomes to

$$||x(t) - y'(t)||_{\mathcal{L}^2} \le \sqrt{2} ||x(0) - y'(0)||_{\mathcal{L}^2} e^{M_i L^2 t}$$

References

- W. Choi, Second order Ito processes based on the martingale problems, Ph. D. Thesis, Sung Kyun Kwan Univ. 1991.
- 2. _____, Relations between the Ito processes based on the Wasserstein function, Comm. Korean Math. Soc. 4 (1993), 793-797.
- 3. N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland, Amsterdam, 1989.
- 4. S. E. A. Mohammed, Stochastic functional differential equations, Pitman, Boston, 1984.
- 5. L. C. G. Rogers and David Williams, Diffusions, Markov processes and martingales, Wiley, New York, 1987.

Department of Mathematics University of Incheon Incheon 402-749, Korea